Skip to main content

Abstract

The normal function of the blood brain barrier (BBB) is the maintenance of the central nervous system homeostasis. The normal structure, development, differentiation and maintenance (and in particular the role of tight junctions) of the BBB are discussed in this chapter, followed by a description of the pathological changes in the BBB during EAE: leakiness, molecular changes in the tight junctions, the crossing of encephalitogenic T cells and the immunological factors responsible for the BBB breakdown during EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Achen, M. G., Clauss, M., Schnürch, H., and Risau, W. (1995). The non-receptor tyrosine kinase Lyn is localized in the developing blood-brain barrier. Diff. 59, 15–24.

    Article  CAS  Google Scholar 

  • Adams, R. H. (2002). Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin Cell Dev Biol 13, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Alt, C., Laschinger, M., and Engelhardt, B. (2002). Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their possible involvement in lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 32, 2133–2144.

    Article  PubMed  CAS  Google Scholar 

  • Bär, T. (1980). The vascular system of the cerebral cortex. Adv AnatEmbryolCell Biol 59, 1–62.

    Google Scholar 

  • Barber, A. J., and Lieth, E. (1997). Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier. Dev Dyn 208, 62–74.

    Article  PubMed  CAS  Google Scholar 

  • Barkalow, F., Goodman, M., Gerritsen, M., and TN, M. (1996). Brain endothelium lack one of two pathways of P-selectin-mediated neutrophil adhesion. Blood 88, 4585–4593.

    PubMed  CAS  Google Scholar 

  • Blake, D. J., and Kröger, S. (2000). The neurobiology of Duchenne muscular dystrophy: learning lessons from muscle? Trends Neurosci 23, 92–99.

    Article  PubMed  CAS  Google Scholar 

  • Blamire, A. M., Anthony, D. C, Rajagopalan, B., Sibson, N. R., Perry, V. H., and Styles, P. (2000). Interleukin-lbeta-induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 20, 8153–8159.

    PubMed  CAS  Google Scholar 

  • Bolton, S. J., Anthony, D. C., and Perry, V. H. (1998). Loss of tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neurosci 86, 1245–1257.

    Article  CAS  Google Scholar 

  • Brightman, M. W. (1968). The intracerebral movement of proteins injected into blood and cerebrospinal fludid of mice. Prog Brain Res 29, 19–31.

    PubMed  CAS  Google Scholar 

  • Bronstein, J. M., Tiwari-Woodruff, S., Buznikov, A. G., and Stevens, D. B. (2000). Involvement of OSP/Claudin-11 in oligodendrocyte membrane interactions: Role in biology and disease [Review], J Neurosci Res 59, 706–711.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, E. C, Williams, M., Youngman, K., Rott, L., and Briskin, M. (1999). Lymphocyte trafficking and regional immunity. Adv Immunol 72, 209–253.

    PubMed  CAS  Google Scholar 

  • Butter, C, Baker, D., O’Neill, J. K., and Turk, J. L. (1991). Mononuclear cell trafficking and plasma protein extravasation into the CNS during chronic relapsing experimental allergic encephalomyelitis in Biozzi AB/H mice. J Neurol Sci 104, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Cannella, B., Cross, A. H., and Raine, C. S. (1991). Adhesion-related molecules in the central nervous system. Upregulation correlates with inflammatory cell influx during relapsing experimental autoimmune encephalomyelitis. Lab Invest 65, 23–31.

    PubMed  CAS  Google Scholar 

  • Carmeliet, P., and Collen, D. (2000). Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann N Y Acad Sci 902, 49–62.

    Google Scholar 

  • Carrithers, M. D., Visintin, I., Kang, S. J., and Janeway, C. A., Jr. (2000). Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123, 1092–1101.

    Article  PubMed  Google Scholar 

  • Cecchelli, R., Dehouck, B., Descamps, L., Fenart, L., Buee-Scherrer, V., Duhem, C., Lundquist, S., Rentfel, M., Torpier, G., and Dehouck, M. P. (1999). In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 36, 165–178.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, L., Kress, Y., Norton, W. T., and Brosnan, C. F. (1989). Increased vesicular transport and decreased mitochondrial content in blood-brain barrier endothelial cells during experimental autoimmune encephalomyelitis. Am J Pathol 135, 1157–1168.

    PubMed  CAS  Google Scholar 

  • Corada, M., Liao, F., Lindgren, M., Lampugnani, M. G., Breviario, F., Frank, R., Muller, W. A., Hicklin, D. J., Bohlen, P., and Dejana, E. (2001). Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97, 1679–1684.

    Article  PubMed  CAS  Google Scholar 

  • Corada, M., Mariotti, M., Thurston, G., Smith, K., Kunkel, R., Brockhaus, M., Lampugnani, M. G., Martin-Padura, I., Stoppacciaro, A., Ruco, L., et al. (1999). Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci (USA) 96, 9815–9820.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A. H., Cannella, B., Brosnan, C. F., and Raine, C. S. (1990). Homing to central nervous system vasculature by antigen-specific lymphocytes. I. Localization of 14C-labeled cells during acute, chronic, and relapsing experimental allergic encephalomyelitis. Lab Invest 63, 162–170.

    PubMed  CAS  Google Scholar 

  • Davis, S., and Yancopoulos, G. D. (1999). The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol 237, 173–185.

    PubMed  CAS  Google Scholar 

  • de Vries, H. E., Blom-Roosemalen, M. C, van Oosten, M., de Boer, A. G., van Berkel, T. J., Breimer, D. D., and Kuiper, J. (1996). The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64, 37–43.

    Article  PubMed  Google Scholar 

  • Dejana, E. (1996). Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 98, 1949–1953.

    PubMed  CAS  Google Scholar 

  • Del Maschio, A., De Luigi, A., Martin-Padura, I., Brockhaus, M., Bartfai, T., Fruscella, P., Adorini, L., Martino, G., Furlan, R., De Simoni, M. G., and Dejana, E. (1999). Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med 190, 1351–1356.

    Article  PubMed  Google Scholar 

  • Deli, M. A., Descamps, L., Dehouck, M. P., Cecchelli, R., Joo, F., Abraham, C. S., and Torpier, G. (1995). Exposure of tumor necrosis factor-alpha to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin. J Neurosci Res 41, 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel, R., Leibstein, A. G., and Schünke, D. (1980). Interlamellar tight junctions of central myelin. II. A freeze-fracture and cytochemical study on their arrangement and composition,. Cell Tissue Res 213, 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, D. J., Gradwohl, G., Fong, G. H., Puri, M. C., Gertsenstein, M., Auerbach, A., and Breitman, M. L. (1994). Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8, 1897–1909.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, G. S., Andrew, D. P., Takimoto, H., Kaufman, S. A., Yoshida, H., Spellberg, J., Luis de la Pompa, J., Elia, A., Wakeham, A., Karan-Tamir, B., et al. (1999). Genetic evidence for functional redundancy of Platelet/Endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162, 3022–3030.

    PubMed  CAS  Google Scholar 

  • Dziegielewska, K. M., Ek, J., Habgood, M. D., and Saunders, N. R. (2001). Development of the choroid plexus. Microsc Res Tech 52, 5–20.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, P. (1904). Ãœber die Beziehung chemischer Constitution, Vertheilung, und pharmakologischer Wirkung. (Berlin).

    Google Scholar 

  • Engelhardt, B., Conley, F. K., and Butcher, E. C. (1994). Cell adhesion molecules on vessels during inflammation in the mouse central nervous system. J Neuroimmunol 51, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt, B., Laschinger, M., Schulz, M., Samulowitz, U., Vestweber, D., and Hoch, G. (1998). The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest 102, 2096–2105.

    PubMed  CAS  Google Scholar 

  • Engelhardt, B., and Risau, W. (1995). The development of the blood-brain barrier. In New concepts of a blood-brain barrier, J. Greenwood, D. Begley, and M. Segal, eds. (London, Plenum Press).

    Google Scholar 

  • Engelhardt, B., Vestweber, D., Hallmann, R., and Schulz, M. (1997). E-and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90, 4459–4472.

    PubMed  CAS  Google Scholar 

  • Engelhardt, B., Wolburg-Buchholz, K., and Wolburg, H. (2001). Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52, 112–129.

    Article  PubMed  CAS  Google Scholar 

  • Faustmann, P. M., and Dermietzel, R. (1985). Extravasation of polymorphonuclear leukocytes from the cerebral microvasculature. Cell Tiss Res 242, 399–407.

    Article  CAS  Google Scholar 

  • Fenstermacher, J. D., Nagaraja, T., and Davies, K. R. (2001). Overview of the structure and function of the blood-brain barrier in vivo. In Blood-Brain Barrier: Drug delivery and brain pathology, D. Kobiler, S. Lustig, and S. Shapira, eds. (New York, Kluwer Academic Plenum Publishers), pp. 1–7.

    Google Scholar 

  • Folkman, J., and D’Amore, P. A. (1996). Blood vessel formation: what is its molecular basis? Cell 87, 1153–1155.

    Article  PubMed  CAS  Google Scholar 

  • Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., and Tsukita, S. (1993). Occludin-a novel integral membrane-protein localizing at tight junctions. J Cell Biol 123, 1777–1788.

    Article  PubMed  CAS  Google Scholar 

  • Furuse, M., Sasaki, H., and Tsukita, S. (1999). Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147, 891–903.

    Article  PubMed  CAS  Google Scholar 

  • Gale, N. W., and Yancopoulos, G. D. (1999). Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13, 1055–1066.

    PubMed  CAS  Google Scholar 

  • Gerhardt, H., Liebner, S., Redies, C., and Wolburg, H. (1999). N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Eur J Neurosci 11, 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  • Gijbels, K., Van Damme, J., Proost, P., Put, W., Carton, H., and Billiau, A. (1990). Interleukin 6 production in the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 20, 233–235.

    Article  PubMed  CAS  Google Scholar 

  • Goldmann, E. E. (1913). Vitalfärbung am Zentralnervensystem. Abh Preuss Wissensch Phys-Math 1, 1–60.

    Google Scholar 

  • Goldstein, G. W. (1988). Endothelial cell-astrocyte interactions. A cellular model of the blood-brain barrier. Ann N Y Acad Sci 529, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Gotsch, U., Borges, E., Bosse, R., Böggemeyer, E., Simon, M., Mossmann, H., and Vestweber, D. (1997). VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110, 583–588.

    PubMed  CAS  Google Scholar 

  • Gow, A., Southwood, C. ML, Li, J. S., Pariali, M, Riordan, G. P., Danias, J., Bronstein, J. M., Brodie, S. E., Kachar, B., and Lazzarini, R. A. (2000). CNS myelin and Sertoli cell tight junction stands are absent in Osp/claudin 11-null mice. J Neurochem 74, S35.

    Google Scholar 

  • Graesser, D., Mahooti, S., Haas, T., Davis, S., Clark, R. B., and Madri, J. A. (1998). The interrelationship of alpha4 integrin and matrix metalloproteinase-2 in the pathogenesis of experimental autoimmune encephalomyelitis. Lab Invest 78, 1445–1458.

    PubMed  CAS  Google Scholar 

  • Graesser, D., Mahooti, S., and Madri, J. A. (2000). Distinct roles for matrix metalloproteinase-2 and alpha4 integrin in autoimmune T cell extravasation and residency in brain parenchyma during experimental autoimmune encephalomyelitis. J Neuroimmunol 109, 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Graesser, D., Solowiej, A., Bruckner, M., Osterweil, E., Juedes, A., Davis, S., Ruddle, N., Engelhardt, B., and Madri, J. M. (2002). Changes in vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1 (CD31) deficient mice. J Clin Invest 109, 383–392.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, J., Bamforth, S. D., Wang, Y., and Devine, L. (1995a). The blood-retinal barrier in immune-mediated diseases of the retina. In New Concepts of a Blood-Brain Barrier, J. Greenwood, ed. (New York, Plenum Press), pp. 315–326.

    Google Scholar 

  • Greenwood, J., Howes, R., and Lightman, S. (1994). The blood-retinal barrier in experimental autoimmune uveoretinitis-leukocyte interactions and functional damage. Lab Invest 70, 39–52.

    PubMed  CAS  Google Scholar 

  • Greenwood, J., Wang, Y., and Calder, V. L. (1995b). Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. Immunol 86, 408–415.

    CAS  Google Scholar 

  • Gutierrez, E. G., Banks, W. A., and Kastin, A. J. (1993). Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 47, 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Hallmann, R., Mayer, D. N., Berg, E. L., Broermann, R., and Butcher, E. C. (1995). Novel mouse endothelial cell surface marker is suppressed during differentation of the blood-brain barrier. Dev Dyn 202, 325–332.

    PubMed  CAS  Google Scholar 

  • Hickey, W. F., Hsu, B. L., and Kimura, H. (1991). T-lymphocyte entry into the central nervous system. J Neurosci Res 28, 254–260.

    Article  PubMed  CAS  Google Scholar 

  • Ilan, N., Cheung, L., Pinter, E., and Madri, J. A. (2000). Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J Biol Chem 275, 21435–21443.

    Article  PubMed  CAS  Google Scholar 

  • Ilan, N., Mahooti, S., Rimm, D. L., and Madri, J. A. (1999) PECAM-1 (CD31) functions as a reservoir for and a modulator of tyrosine-phosphorylated beta-catenin. J Cell Sci 112, 3005–3014.

    PubMed  CAS  Google Scholar 

  • Janzer, R. C, and Raff, M. C. (1987). Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325, 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Jucker, M., Tian, M., Norton, D. D., Sherman, C, and Kusiak, J. W. (1996). Laminin alpha 2 is a component of brain capillary basement membrane: reduced expression in dystrophic dy mice. Neurosci 71, 1153–1161.

    Article  CAS  Google Scholar 

  • Juhler, M. (1988). Pathophysiological aspects of acute experimental allergic encephalomyelitis. Acta Neurol Scand Suppl 119, 1–21.

    CAS  Google Scholar 

  • Kerfoot, S., and Kubes, P. (2002). Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169, 1000–1006.

    PubMed  CAS  Google Scholar 

  • Kermode, A. G., Thompson, A. J., Tofts, P., MacManus, D. G., Kendall, B. E., Kingsley, D. P. E., Moseley, I. F., Rudge, P., and McDonald, W. I. (1990). Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Brain 113, 1477–1489.

    Article  PubMed  Google Scholar 

  • Kniesel, U., and Wolburg, H. (2000). Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20, 57–76.

    Article  PubMed  CAS  Google Scholar 

  • Korner, H., Riminton, D. S., Strickland, D. H., Lemckert, F. A., Pollard, J. D., and Sedgwick, J. D. (1997). Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J Exp Med 186, 1585–1590.

    Article  PubMed  CAS  Google Scholar 

  • Laschinger, M., and Engelhardt, B. (2000). Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J Neuroimmunol 102, 32–43.

    Article  PubMed  CAS  Google Scholar 

  • Laschinger, M., Vajkoczy, P., and Engelhardt, B. (2002). LFA-1 is not involved in G-protein dependent adhesion of encephalitogenic T cell blasts to CNS microvessels in vivo. Eur. J. Immmunol. 32:3598–3606.

    Article  CAS  Google Scholar 

  • Lechner, F., Sahrbacher, U., Suter, T., Frei, K., Brockhaus, M., Koedel, U., and Fontana, A. (2000). Antibodies to the junctional adhesion molecule cause disruption of endothelial cells and do not prevent leukocyte influx into the meninges after viral or bacterial infection. J Infect Dis 182, 978–982.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C. (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245.

    Article  PubMed  CAS  Google Scholar 

  • Male, D., and Pryce, G. (1988). Kinetics of MHC gene expression and mRNA synthesis in brain endothelium. Immunol 63, 37–42.

    CAS  Google Scholar 

  • Martin-Padura, I., Lostaglio, S., Schneemann, M, Williams, L., Romano, M., Fruscella, P., Panzeri, C, Stoppacciaro, A., Ruco, L., Villa, A., et al. (1998). Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Mayhanm, W. G. (2002). Cellular mechanisms by which tumor necrosis factor-alpha produces disruption of the blood-brain barrier. Brain Res 927, 144–152.

    Article  Google Scholar 

  • McCarron, R. M. (1992). EL-1-induced prostacyclin production by cerebral vascular endothelial cells inhibits myelin basic protein-specific lymphocyte proliferation. Cell Immunol 145, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Meresse, S., Dehouck, M. P., Delorme, P., Bensaid, M., Tauber, J. P., Delbart, C, Fruchart, J. C, and Cecchelli, R. (1989). Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem 53, 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Morita, K., Furuse, M., Fujimoto, K., and Tsukita, S. (1999a). Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci (USA) 96, 511–516.

    Article  CAS  Google Scholar 

  • Morita, K., Sasaki, H., Fujimoto, K., Furuse, M., and Tsukita, S. (1999b). Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol 145, 579–588.

    Article  PubMed  CAS  Google Scholar 

  • Morita, K., Sasaki, H., Furuse, M., and Tsukita, S. (1999c). Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Mühleisen, H., Wolburg, H., and Betz, E. (1989). Freeze-fracture analysis of endothelial cell membranes in rabbit carotid arteries subjected to short-term atherogenic stimuli. Virch Arch Cell Pathol 56, 413–417.

    Google Scholar 

  • Muller, W. A., Weigl, S. A., Deng, X., and Phillips, D. M. (1993). PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178, 449–460.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, Z., Peters, H., and Hüttner, I. (1984). Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab Invest 50, 313–322.

    PubMed  CAS  Google Scholar 

  • Nakada, M. T., Amin, K., Christofidou-Solomidou, M., O’Brien, C. D., Sun, J., Gurubhagavatula, I., Heavner, G. A., Taylor, A. H., Paddock, C., Sun, Q. H., et al. (2000). Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment. J Immunol 164, 452–462.

    PubMed  CAS  Google Scholar 

  • Nasdala, I., Wolburg-Buchholz, K., Wolburg, H., Kuhn, A., Ebnet, K., Brachtendorf, G., Samulowitz, U., Kuster, B., Engelhardt, B., Vestweber, D., and Butz, S. (2002). A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem 277, 16294–16303.

    Article  PubMed  CAS  Google Scholar 

  • Nico, B., Cantino, D., Bertossi, M, Ribatti, D., Sassoe, M., and Roncali, L. (1992). Tight endothelial junctions in the developing microvasculature-a thin-section and freeze-fracture study in the chick-embryo optic tectum. J Submicr Cytol 24, 85–95.

    CAS  Google Scholar 

  • Nitkin, R. M, Smith, M. A., Magil, C, Fallon, J. R., Yao, Y. M., Wallace, B. G., and McMahan, U. J. (1987). Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105, 2471–2478.

    Article  PubMed  CAS  Google Scholar 

  • Omari, K. I., and Dorovini-Zis, K. (2001). Expression and function of the costimulatory molecules B7-1 (CD80) and B7-2 (CD86) in an in vitro model of the human blood—brain barrier. J Neuroimmunol 113, 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Ostermann, G., Weber, K. S. C, Zernecke, A., Schroder, A., and Weber, C. (2002). JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nature Immunology 3, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., Banks, W. A., Kennedy, M. K., Gutierrez, E. G., and Kastin, A. J. (1996). Differential permeability of the BBB in acute EAE: enhanced transport of TNF-alpha. Am J Physiol 271, E636–642.

    PubMed  CAS  Google Scholar 

  • Pan, W., and Kastin, A. J. (2001). Upregulation of the transport system for TNFalpha at the blood-brain barrier. Arch Physiol Biochem 109, 350–353.

    PubMed  CAS  Google Scholar 

  • Pardridge, W. M. (1988). Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 28, 25–39.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M. (1991). Advances in cell biology of blood-brain barrier transport. Semin Cell Biol 2, 419–426.

    PubMed  CAS  Google Scholar 

  • Phelps, C. H. (1972). The development of glio-vascular relationships in the rat spinal cord. ZZellforsch 128, 555–563.

    Article  CAS  Google Scholar 

  • Prat, A., Biernacki, K., Becher, B., and Antel, J. P. (2000). B7 expression and antigen presentation by human brain endothelial cells: requirement for proinflammatory cytokines. J Neuropathol Exp Neurol 59, 129–136.

    PubMed  CAS  Google Scholar 

  • Prat, A., Biernacki, K., Wosik, K., and Antel, J. P. (2001). Glial cell influence on the human blood-brain barrier. Glia 36, 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Proescholdt, M. A., Jacobson, S., Tresser, N., Oldfield, E. H., and Merrill, M. J. (2002). Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J Neuropathol Exp Neurol 61, 914–925.

    PubMed  CAS  Google Scholar 

  • Qin, Y., and Sato, T. N. (1995). Mouse multidrug resistance la/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev Dyn 202, 172–180.

    PubMed  CAS  Google Scholar 

  • Rascher, G., Fischmann, A., Kröger, S., Duffner, F., Grote, E.-H., and Wolburg, H. (2002). Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104, 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Reese, T. S., and Karnovsky, M. J. (1967). Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W. (1991). Induction of blood-brain barrier endothelial cell differentiation. Ann N Y Acad Sci 633, 405–419.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W. (1997). Mechanisms of angiogenesis. Nature 386, 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Engelhardt, B., and Wekerle, H. (1990). Immune function of the blood-brain barrier: Incomplete presentation of protein (auto-)antigens by rat brain microvascular endothelium in vitro. J Cell Biol 110, 1757–1766.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Hallmann, R., and Albrech, U. (1986). Differentiation-dependent expression of protein in brain endothelium during development of the blood-brain barrier. Dev Biol 117, 537–545.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J., et al. (1991). A cell-culture model of the blood-brain-barrier. J Cell Biol 115, 1725–1735.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, M., Furuse, M., Sasaki, H., Schulzke, J.-D., Fromm, M., Takano, H., Noda, T., and Tsukita, S. (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 22, 4131–4142.

    Google Scholar 

  • Schinkel, A. H., Smit, J. J. M., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., Mol, C. A. A. M., van der Walk, M. A., Robanus-Maandag, E. C., te Riele, H. P. J., et al. (1994). Disruption of the mouse mdr l a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, C., and Firth, J. A. (1993). Immunohistochemical localization of adherens junction components in blood-brain-barrier microvessels of the rat. J Cell Sci 104, 773–782.

    PubMed  Google Scholar 

  • Sedgwick, J. D., Hughes, C. C., Male, D. K., MacPhee, I. A., and terMeulen, V. (1990). Antigen-specific damage to brain vascular endothelial cells mediated by encephalitogenic and nonencephalitogenic CD4+ T cell lines in vitro. J Immunol 145, 2474–2481.

    PubMed  CAS  Google Scholar 

  • Senger, D. R., Connolly, D. T., Van de Water, L., Feder, J., and Dvorak, H. F. (1990). Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 50, 1774–1778.

    PubMed  CAS  Google Scholar 

  • Seulberger, H., Unger, C. M., and Risau, W. (1992). HT7, Neurothelin, Basigin, gp42 and OX-47-many names for one developmentally regulated immuno-globulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers and neurons. Neurosci Lett 140, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Simionescu, M., Ghinea, N., Fixman, A., Lasser, M., Kukes, L., Simionescu, N., and Palade, G. E. (1988). The cerebral microvasculature of the rat: structure and luminal surface properties during early development. J Submicrosc Cytol 20, 243–261.

    CAS  Google Scholar 

  • Sims, D. E. (1986). The Pericyte — A review. Tissue and Cell 18, 153–174.

    Article  PubMed  CAS  Google Scholar 

  • Sixt, M., Engelhardt, B., Pausch, F., Hallmann, R., Wendler, O., and Sorokin, L. M. (2001). Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153, 933–946.

    Article  PubMed  CAS  Google Scholar 

  • Sobel, R. A., Hinojoza, J. R., Maeda, A., and Chen, M. (1998). Endothelial cell integrin laminin receptor expression in multiple sclerosis lesions. Am J Pathol 153, 405–415.

    PubMed  CAS  Google Scholar 

  • Sobel, R. A., Natale, J. M., and Schneeberger, E. E. (1987). The immunopathology of acute experimental allergic encephalomyelitis. IV. An ultrastructural immunocytochemical study of class II major histocompatiblity comples (Ia) expression. J Neuropathol Exp Neurol 46, 239–249.

    PubMed  CAS  Google Scholar 

  • Sorokin, L., Girg, W., Gopfert, T., Hallmann, R., and Deutzmann, R. (1994). Expression of novel 400-kDa laminin chains by mouse and bovine endothelial cells. Eur J Biochem 223, 603–610.

    Article  PubMed  CAS  Google Scholar 

  • Stan, R. V., Ghitescu, L., Jacobson, B. S., and Palade, G. E. (1999). Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J Cell Biol 145, 1189–1198.

    Article  PubMed  CAS  Google Scholar 

  • Stanimirovic, D., and Satoh, K. (2000). Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol 10, 113–126.

    Article  PubMed  CAS  Google Scholar 

  • Steffen, B. J., Breier, G., Butcher, E. C., Schulz, M., and Engelhardt, B. (1996). ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol 148, 1819–1838.

    PubMed  CAS  Google Scholar 

  • Steffen, B. J., Butcher, E. C., and Engelhardt, B. (1994). Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 145, 189–201.

    PubMed  CAS  Google Scholar 

  • Stevens, D. B., Chen, K., Seitz, R. S., Sercarz, E. E., and Bronstein, J. M. (1999). Oligodendrocyte-specific protein peptides induce experimental autoimmune encephalomyelitis in SJL/J mice. J Immunol 15, 7501–7509.

    Google Scholar 

  • Stewart, P. A. (2000). Development of the blood-brain barrier. In Morphogenesis of Endothelium, W. Risau, and G. M. Rubanyi, eds. (Amsterdam, Harwood Academic Publishers), pp. 109–122.

    Google Scholar 

  • Stewart, P. A., and Wiley, M. J. (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras. Dev Biol 84, 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Tonra, J. R., Reiseter, B. S., Kolbeck, R., Nagashima, K., Robertson, R., Keyt, B., and Lindsay, R. M. (2001). Comparison of the timing of acute blood-brain barrier breakdown to rabbit immunoglobulin G in the cerebellum and spinal cord of mice with experimental autoimmune encephalomyelitis. J Comp Neurol 430, 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Tran, E. H., Hoekstra, K., van Rooijen, N., Dijkstra, C. D., and Owens, T. (1998). Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161, 3767–3775.

    PubMed  CAS  Google Scholar 

  • Tsukada, N., Matsuda, M., Miyagi, K., and Yanagisawa, N. (1993). Cytotoxicity of T cells for cerebral endothelium in multiple sclerosis. J Neurol Sci 117, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., Furuse, M., and Itoh, M. (1999). Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11, 628–633.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, E., Pickelmann, S., Rohrich, F., Baethmann, A., and Schurer, L. (1999). Influence of platelet-activating factor on cerebral microcirculation in rats: part 2. Local application. Stroke 30, 880–886.

    PubMed  CAS  Google Scholar 

  • Vajkoczy, P., Laschinger, M., and Engelhardt, B. (2001). Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108, 557–565.

    Article  PubMed  CAS  Google Scholar 

  • Vajkoczy, P., Ullrich, A., and Menger, M. D. (2000). Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia (New York) 2, 53–61.

    CAS  Google Scholar 

  • Virtanen, I., Gullberg, D., Rissanen, J., Kivilaakso, E., Kiviluoto, T., Laitinen, L. A., Lehto, V. P., and Ekblom, P. (2000). Laminin alpha l-chain shows a restricted distribution in epithelial basement membranes of fetal and adult human tissues. Exp Cell Res 257, 298–309.

    Article  PubMed  CAS  Google Scholar 

  • Vleminckx, K., and Kemler, R. (1999). Cadherins and tissue formation: integrating adhesion and signaling. Bioessays 21, 211–220.

    Article  PubMed  CAS  Google Scholar 

  • von Andrian, U. H., and Engelhardt, B. (2003). Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 348, 68–72.

    Article  Google Scholar 

  • Wakai, S., and Hirokawa, N. (1978). Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195, 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Calder, V. L., Lightman, S. L., and Greenwood, J. (1995). Antigen presentation by rat brain and retinal endothelial cells. J Neuroimmunol 61, 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, C. E., Healey, D. G., Baker, D., Willoughby, D. A., and Turk, J. L. (1989). Presentation of myelin basic protein by normal guinea-pig brain endothelial cells and its relevance to experimental allergic encephalomyelitis. Immunology 67, 435–440.

    PubMed  CAS  Google Scholar 

  • Wilcox, C. E., Ward, A. M., Evans, A., Baker, D., Rothlein, R., and Turk, J. L. (1990). Endothelial cell expression of the intercellular adhesion molecule-1 (ICAM-1) in the central nervous system of guinea pigs during acute and chronic relapsing experimental allergic encephalomyelitis. J Neuroimmunol 30, 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Wolburg, H., and Lippoldt, A. (2002). Tight Junctions of the blood-brain barrier, development, composition and regulation. Vasc Pharmacol 28, 323–337.

    Article  Google Scholar 

  • Wolburg, H., Neuhaus, J., Kniesel, U., Krauss, B., Schmid, E. M., Ocalan, M., Farrell, C., and Risau, W. (1994). Modulation of tight junction structure in blood-brain-barrier endothelial-cells — effects of tissue-culture, 2nd messengers and cocultured astrocytes. J Cell Sci 107, 1347–1357.

    PubMed  CAS  Google Scholar 

  • Wolburg, H., Wolburg-Buchholz, K., Kraus, J., Rascher-Eggstein, G., Liebner, S., Hamm, S., Duffner, F., Grote, E.-H., Risau, W., and Engelhardt, B. (2003). Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol, online.

    Google Scholar 

  • Wolburg, H., Wolburg-Buchholz, K., Liebner, S., and Engelhardt, B. (2001). OSP/claudin-11, claudin-1 and claudin-2 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 13, 77–80.

    Article  Google Scholar 

  • Wolburg, K., Gerhardt, H., Schulz, M, Wolburg, H., and Engelhardt, B. (1999). Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tiss Res 296, 259–269.

    Article  CAS  Google Scholar 

  • Yednock, T. A., Cannon, C., Fritz, L. C., Sanchez Madrid, F., Steinman, L., and Karin, N. (1992). Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356, 63–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Engelhardt, B., Wolburg, H. (2005). The Blood-Brain Barrier in EAE. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_20

Download citation

Publish with us

Policies and ethics