Skip to main content

Erythrocyte Ion Channels in Regulation of Apoptosis

  • Conference paper
Cell Volume and Signaling

Abstract

Erythrocytes lack mitochondria and nuclei, key organelles in the regulation of apoptosis. Until recently, erythrocytes were thus not considered subject to this type of cell death. However, exposure of erythrocytes to the Ca2+ ionophore ionomycin was shown to induce cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at the cell surface, all typical features of apoptosis. Further studies revealed the participation of ion channels in the regulation of erythrocyte “apoptosis.” Osmotic shock, oxidative stress and energy depletion all activate a Ca2+-permeable non-selective cation channel in the erythrocyte cell membrane. The subsequent increase of Ca2+ concentration stimulates a scramblase leading to breakdown of cell membrane phosphatidylserine asymmetry and activates Ca2+ sensitive K+ (Gardos) channels leading to KCl loss and (further) cell shrinkage. Phosphatidylserine exposure and cell shrinkage are blunted in the nominal absence of extracellular Ca2+, in the presence of the cation channel inhibitors amiloride or ethylisopropylamiloride, at increased extracellular K+ or in the presence of the Gardos channel inhibitors clotrimazole or charybdotoxin. Thus, increase of cytosolic Ca2+ and cellular loss of K+ participate in the triggering of erythrocyte scramblase. Nevertheless, phosphatidylserine exposure is not completely abrogated in the nominal absence of Ca2+, pointing to additional Ca2+-independent pathways. One of those is activation of sphingomyelinase with subsequent formation of ceramide which in turn leads to stimulation of erythrocyte scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Erythropoietin inhibits the non-selective cation channel and thus interferes with erythrocyte “apoptosis.” Susceptibility to scramblase activation is enhanced in thalassemia, sickle cell disease and glucose-6-phosphate dehydrogenase deficiency. Infection with Plasmodium falciparum leads to activation of the cation channel eventually triggering erythrocyte “apoptosis.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. D. R. Green and J. C. Reed, Mitochondria and apoptosis, Science. 281, 1309–1312 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. E. Gulbins, A. Jekle, K. Ferlinz, H. Grassme, and F. Lang, Physiology of apoptosis, Am. J. Physiol Renal Physiol. 279, F605–F615 (2000).

    PubMed  CAS  Google Scholar 

  3. F. E. Boas, L. Forman, and E. Beutler, Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia, Proc. Natl. Acad. Sci. U. S. A. 95, 3077–3081 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. S. Eda and I. W. Sherman, Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine, Cell. Physiol. Biochem. 12, 373–384 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. C. P. Berg, I. H. Engels, A. Rothbart, K. Lauber, A. Renz, S. F. Schlosser, K. Schulze-Osthoff, and S. Wesselborg, Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis, Cell Death. Differ. 8, 1197–1206 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. D. Bratosin, J. Estaquier, F. Petit, D. Arnoult, B. Quatannens, J. P. Tissier, C. Slomianny, C. Sartiaux, C. Alonso, J. J. Huart, J. Montreuil, and J. C. Ameisen, Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria, Cell Death. Differ. 8, 1143–1156 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. E. Daugas, C. Cande, and G. Kroemer, Erythrocytes: death of a mummy, Cell Death. Differ. 8, 1131–1133 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. S. M. Huber, N. Gamper, and F. Lang, Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts, Pflugers Arch. 441, 551–558 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. C. Duranton, S. M. Huber, and F. Lang, Oxidation induces a Cl(−)-dependent cation conductance in human red blood cells, J. Physiol. 539, 847–855 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. I. Bernhardt, A. C. Hall, and J. C. Ellory, Effects of low ionic strength media on passive human red cell monovalent cation transport, J. Physiol. 434, 489–506 (1991).

    PubMed  CAS  Google Scholar 

  11. G. S. Jones and P. A. Knauf, Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin, J. Gen. Physiol. 86, 721–38 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. P. L. LaCelle and A. Rothstein, The passive permeability of the red blood cell to cations, J. Gen. Physiol. 50, 171–88 (1966).

    Article  PubMed  CAS  Google Scholar 

  13. S. J. Culliford, I. Bernhardt, and J. C. Ellory, Activation of a novel organic solute transporter in mammalian red blood cells, J Physiol. 489 (Pt 3), 755–65 (1995).

    PubMed  CAS  Google Scholar 

  14. K. S. Lang, S. Myssina, V. Tanneur, T. Wieder, S. M. Huber, F. Lang, and C. Duranton, Inhibition of erythrocyte cation channels and apoptosis by ethylisopropylamiloride, Naunyn Schmiedebergs Arch. Pharmacol. 367, 391–396 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. L. Kaestner, P. Christophersen, I. Bernhardt, and P. Bennekou, The non-selective voltage-activated cation channel in the human red blood cell membrane: reconciliation between two conflicting reports and further characterisation, Bioelectrochemistry. 52, 117–25 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. K. S. Lang, C. Duranton, H. Poehlmann, S. Myssina, C. Bauer, F. Lang, T. Wieder, and S. M. Huber, Cation channels trigger apoptotic death of erythrocytes, Cell Death and Differentiation. 10(2), 249–256 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. S. Bilmen, T. A. Aksu, S. Gumuslu, D. K. Korgun, and D. Canatan, Antioxidant capacity of G-6-PDdeficient erythrocytes, Clin Chim Acta. 303, 83–6 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. I. Mavelli, M. R. Ciriolo, L. Rossi, T. Meloni, G. Forteleoni, A. De Flora, U. Benatti, A. Morelli, and G. Rotilio, Favism: a hemolytic disease associated with increased superoxide dismutase and decreased glutathione peroxidase activities in red blood cells, Eur J Biochem. 139, 13–8 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. K. S. Lang, C. Weigert, S. Braedel, S. Fillon, M. Palmada, E. Schleicher, H. G. Rammensee, and F. Lang, Inhibition of interferon-gamma expression by osmotic shrinkage of peripheral blood lymphocytes, Am. J. Physiol Cell Physiol. 284, C200–C208 (2003).

    PubMed  CAS  Google Scholar 

  20. R. M. Bookchin, O. E. Ortiz, and V. L. Lew, Activation of calcium-dependent potassium channels in deoxygenated sickled red cells, Prog Clin Biol Res. 240, 193–200 (1987).

    PubMed  CAS  Google Scholar 

  21. C. Brugnara, L. de Franceschi, and S. L. Alper, Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives, J. Clin. Invest. 92, 520–6 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. R. S. Franco, M. Palascak, H. Thompson, D. L. Rucknagel, and C. H. Joiner, Dehydration of transferrin receptor-positive sickle reticulocytes during continuous or cyclic deoxygenation: role of KCl cotransport and extracellular calcium, Blood. 88, 4359–65 (1996).

    PubMed  CAS  Google Scholar 

  23. C. H. Joiner, Cation transport and volume regulation in sickle red blood cells, Am J Physiol. 264, C251–C270 (1993).

    PubMed  CAS  Google Scholar 

  24. V. L. Lew and R. M. Bookchin, Osmotic effects of protein polymerization: analysis of volume changes in sickle cell anemia red cells following deoxy-hemoglobin S polymerization, J Membr. Biol. 122, 55–67 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. P. A. Lang, S. Kaiser, S. Myssina, T. Wieder, F. Lang, and S. M. Huber, Role of Ca2+ activated K+ channels in human erythrocyte apoptosis, Am J Physiol-Cell Physiol. 285, C1553–C1560 (2003).

    PubMed  CAS  Google Scholar 

  26. C. D. Bortner, F. M. Hughes, Jr., and J. A. Cidlowski, A primary role for K+ and Na+ efflux in the activation of apoptosis, J Biol. Chem. 272, 32436–32442 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. C. D. Bortner and J. A. Cidlowski, Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis, J Biol Chem. 274, 21953–62 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. M. Gomez-Angelats, C. D. Bortner, and J. A. Cidlowski, Protein kinase C (PKC) inhibits fas receptorinduced apoptosis through modulation of the loss of K+ and cell shrinkage. A role for PKC upstream of caspases, J Biol. Chem. 275, 19609–19619 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. F. M. Hughes, Jr., C. D. Bortner, G. D. Purdy, and J. A. Cidlowski, Intracellular K+ suppresses the activation of apoptosis in lymphocytes, J Biol. Chem. 272, 30567–30576 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. F. M. Hughes, Jr. and J. A. Cidlowski, Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo, Adv. Enzyme Regul. 39, 157–171 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. J. W. Montague, C. D. Bortner, F. M. Hughes, Jr., and J. A. Cidlowski, A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis, Steroids. 64, 563–569 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. G. I. Perez, D. V. Maravei, A. M. Trbovich, J. A. Cidlowski, J. L. Tilly, and F. M. Hughes, Jr., Identification of potassium-dependent and-independent components of the apoptotic machinery in mouse ovarian germ cells and granulosa cells, Biol. Reprod. 63, 1358–1369 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. S. Myssina, S. M. Huber, C. Birka, P. A. Lang, K. S. Lang, T. Wieder, and F. Lang, Inhibition of erythrocyte cation channels by erythropoietin, J Am Soc Nephrol. 14, 2750–2757 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. W. Jelkmann, Erythropoietin: structure, control of production, and function, Physiol Rev. 72, 449–489 (1992).

    PubMed  CAS  Google Scholar 

  35. M. Polenakovic and A. Sikole, Is erythropoietin a survival factor for red blood cells?, J Am Soc Nephrol. 7, 1178–1182 (1996).

    PubMed  CAS  Google Scholar 

  36. H. Imanishi, T. Nakai, T. Abe, and T. Takino, Glutathione metabolism in red cell aging, Mech Ageing Dev. 32, 57–62 (1985).

    Article  PubMed  CAS  Google Scholar 

  37. G. Piccinini, G. Minetti, C. Balduini, and A. Brovelli, Oxidation state of glutathione and membrane proteins in human red cells of different age, Mech Ageing Dev. 78, 15–26 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. C. H. Joiner and P. K. Lauf, Ouabain binding and potassium transport in young and old populations of human red cells, Membr Biochem. 1, 187–202 (1978).

    PubMed  CAS  Google Scholar 

  39. N. R. Aiken, J. D. Satterlee, and W. R. Galey, Measurement of intracellular Ca2+ in young and old human erythrocytes using 19F-NMR spectroscopy, Biochim. Biophys. Acta. 1136, 155–60 (1992).

    Article  PubMed  CAS  Google Scholar 

  40. D. Allan and P. J. Raval, The role of Ca2+-dependent biochemical changes in the ageing process in normal red cells and in the development of irreversibly sickled cells, Folia Haematol Int Mag Klin Morphol Blutforsch. 114, 499–503 (1987).

    PubMed  CAS  Google Scholar 

  41. I._L. Cameron, W. E. Hardman, N. K. Smith, G. D. Fullerton, and A. Miseta, Changes in the concentration of ions during senescence of the human erythrocyte, Cell Biol Int. 17, 93–8 (1993).

    Article  PubMed  CAS  Google Scholar 

  42. J. J. Kramer and N. I. Swislocki, The effects of pentoxifylline on rat erythrocytes of different age, Mech Ageing Dev. 32, 283–98 (1985).

    Article  PubMed  CAS  Google Scholar 

  43. P. J. Romero, E. A. Romero, and M. D. Winkler, Ionic calcium content of light dense human red cells separated by Percoll density gradients, Biochim Biophys Acta. 1323, 23–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. N. W. Seidler and N. I. Swislocki, Ca2+ transport activities of inside-out vesicles prepared from densityseparated erythrocytes from rat and human, Mol Cell Biochem. 105, 159–69 (1991).

    Article  PubMed  CAS  Google Scholar 

  45. F. Lang, G. L. Busch, M. Ritter, H. Vökl, S. Waldegger, E. Gulbins, and D. Hässinger, Functional significance of cell volume regulatory mechanisms, Physiol Rev. 78, 247–306 (1998).

    PubMed  CAS  Google Scholar 

  46. K. Kirk, Membrane transport in the malaria-infected erythrocyte, Physiol Rev. 81, 495–537 (2001).

    PubMed  CAS  Google Scholar 

  47. K. S. Lang, B. Roll, S. Myssina, M. Schittenhelm, H. G. Scheel-Walter, L. Kanz, J. Fritz, F. Lang, S. M. Huber, and T. Wieder, Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency, Cell Physiol Biochem. 12, 365–72 (2002).

    Article  PubMed  CAS  Google Scholar 

  48. L. S. Kean, L. E. Brown, J. W. Nichols, N. Mohandas, D. R. Archer, and L. L. Hsu, Comparison of mechanisms of anemia in mice with sickle cell disease and beta-thalassemia: peripheral destruction, ineffective erythropoiesis, and phospholipid scramblase-mediated phosphatidylserine exposure, Exp Hematol. 30, 394–402 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. K. S. Lang, S. Myssina, V. Brand, C. Sandu, P. A. Lang, S. M. Huber, F. Lang, and T. Wieder, Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes, Cell Death. Differ. 11, 231–243 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Lang, F. et al. (2004). Erythrocyte Ion Channels in Regulation of Apoptosis. In: Lauf, P.K., Adragna, N.C. (eds) Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol 559. Springer, Boston, MA . https://doi.org/10.1007/0-387-23752-6_20

Download citation

Publish with us

Policies and ethics