Skip to main content

Near Infrared Spectroscopic Imaging: Theory

  • Chapter
Alternative Breast Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. S. Patterson et al., “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties.” Appl. Opt., Vol. 28, 1989, pp. 2331–2336.

    Google Scholar 

  2. S. R. Arridge, “Optical tomography in medical imaging.” Inverse Problems, Vol. 15, 1999, pp. R41–R93.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. C. Wilson et al., “The optical absorption and scattering properties of tissues in the visible and near-infrared wavelength range,” in Light in Biology and Medicine, M. Douglas and Dall’ Acqua, eds. Plenum, 1988, pp. 45–52.

    Google Scholar 

  4. W. F. Cheong et al., “A review of the optical properties of biological tissues.” IEEE J. of Quant. Electr., Vol. 26, 1990, pp. 2166–2185.

    Google Scholar 

  5. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties.” Med. Phys., Vol. 19, 1992, pp. 879–888.

    Article  Google Scholar 

  6. R. A. J. Groenhuis, H. A. Ferwerda, J. J. ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. I. Theory.” Appl. Opt., Vol. 22,1983, pp. 2456–2462.

    Google Scholar 

  7. M. S. Patterson et al., “Diffusion equation representation of photon migration in tissue,” in Microwave Theory and Techniques Symposium Digest. (IEEE: New York, 1991), pp. 905–908.

    Google Scholar 

  8. J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media.” Phys. Rev. A., Vol. 44, 1991, pp. 3948–3959.

    Google Scholar 

  9. I. Freund, “Surface reflections and boundary-conditions for diffusive photon transport.” Phys. Rev. A, Vol. 45, 1992, pp. 8854–8858.

    Google Scholar 

  10. C. P. Gonatas et al., “Effects due to geometry and boundary conditions in multiple light scattering.” Phys. Rev. E, Vol. 48, 1993, pp. 2212–2216.

    Article  Google Scholar 

  11. R. C. Haskell et al., “Boundary conditions for the diffusion equation in radiative transfer.” J. Opt. Soc. Am. A, Vol. 11, 1994, pp. 2727–2741.

    Google Scholar 

  12. A. H. Hielscher et al., “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues.” Phys. Med. Biol., Vol. 40, 1995, pp. 1957–1975.

    Article  Google Scholar 

  13. R. Aronson, “Boundary conditions for diffusion of light.” J. Opt. Soc. Am. A, Vol. 12, 1995, pp. 2532–2539.

    Google Scholar 

  14. J. C. J. Paasschens and G. W. ’t Hooft, “Influence of boundaries on the imaging of objects in turbid media.” J. Opt. Soc. Am. A, Vol. 15, 1998, pp. 1797–1812.

    Google Scholar 

  15. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization.” Appl. Opt., Vol. 35, 1996, pp. 3447–3458.

    Article  Google Scholar 

  16. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation.” Med. Phys., Vol. 22, 1995, pp. 691–701.

    Article  Google Scholar 

  17. H. Dehghani et al., “Multiwavelength three-dimensional near-infrared tomography of the breast: Initial simulation, phantom, and clinical results.” Appl. Opt., Vol. 42, 2003, pp. 135–145.

    Google Scholar 

  18. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (New York: John Wiley & Sons, 1976), pp. 133–138.

    Google Scholar 

  19. J. B. Fishkin et al., “Gigahertz photon density waves in a turbid medium: Theory and experiments.” Phys. Rev. E, Vol. 53, 1996, pp. 2307–2319.

    Article  Google Scholar 

  20. Moulton, J. D., “Diffusion theory modeling of picosecond laser pulse propagation in turbid media,” in Physics (McMaster University: Hamilton, 1990).

    Google Scholar 

  21. M. Schweiger et al., “The finite element model for the propagation of light in scattering media: Boundary and source conditions.” Med. Phys., Vol. 22, 1995, pp. 1779–1792.

    Article  Google Scholar 

  22. M. Keijzer, W. M. Star, and P. R. M. Storchi, “Optical diffusion in layered media.” Appl. Opt., Vol. 29, 1988, pp. 1820–1824.

    Google Scholar 

  23. J. Schöberl, “NETGEN—Automatic mesh generator.” Available at http://www.hpfem. jku.at/netgen (accessed Oct. 29, 2003).

    Google Scholar 

  24. S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations.” Appl. Opt., Vol. 34, 1995, pp. 8026–8037.

    Google Scholar 

  25. A. Tikhonov, Solutions of Ill-Posed Problems (New York: John Wiley & Sons, 1977).

    MATH  Google Scholar 

  26. A. H. Hielscher and S. Bartel, “Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography.” J. Biomed. Opt., 2001, Vol. 6, pp. 183–192.

    Article  Google Scholar 

  27. B. Kaltenbacher, “Newton-type methods for ill-posed problems.” Inverse Problems, Vol. 13, 1997, pp. 729–753.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. W. Pogue et al., “Spatially variant regularization improves diffuse optical tomography.” Appl. Opt., Vol. 38, 1999, pp. 2950–2961.

    Article  Google Scholar 

  29. M. J. Eppstein et al., “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements.” Appl. Opt., Vol. 38, 1999, pp. 2138–2150.

    Google Scholar 

  30. M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information.” Phys. Med. Biol., Vol. 44, 1999, pp. 2703–2722.

    Google Scholar 

  31. H. Dehghani et al., “Three dimensional optical tomography: Resolution in small object imaging.” Appl. Opt., Vol. 42, 2003, pp. 3117–3128.

    Google Scholar 

  32. T. O. McBride, Spectroscopic Reconstructed Near Infrared Tomographic Imaging for Breast Cancer Diagnosis. Ph.D. dissertation, Thayer School of Engineering, Dartmouth College, Hanover, NH, May, 2001.

    Google Scholar 

  33. T. O. McBride et al., “Strategies for absolute calibration of near infrared tomographic tissue imaging.” Oxygen Transport to Tissue XXIV, 2003, pp. 85–99.

    Google Scholar 

  34. S. R. Arridge and M. Schwieger, “Gradient-based optimisation scheme for optical tomography.” Opt. Exp., 2(6), 1998, pp. 212–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Dehghani, H., Pogue, B. (2005). Near Infrared Spectroscopic Imaging: Theory. In: Alternative Breast Imaging. The Kluwer International Series in Engineering and Computer Science, vol 778. Springer, Boston, MA. https://doi.org/10.1007/0-387-23364-4_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-23364-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23363-5

  • Online ISBN: 978-0-387-23364-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics