Skip to main content

Electrical Impedance Spectroscopy: Theory

  • Chapter
Alternative Breast Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Ackmann and M. A. Seitz, “Methods of complex impedance measurements in biologic tissue.” CRC Crit. Rev. Biomed. Eng., Vol. 11, 1984, pp. 281–311.

    Google Scholar 

  2. E. Gersing and M. Osypka, “On the frequency range necessary for a multi-frequency tomograph.” Innov. Tech. Biol. Med., Vol. 15, 1994, pp. 70–71.

    Google Scholar 

  3. J. Jossinet, “Variability of impedivity in normal and pathological breast tissue.” Med. & Biol. Eng. & Comput., Vol. 34, 1996, pp. 346–350.

    Google Scholar 

  4. D. C. Barber and B. H. Brown, “Imaging spatial distribution of resistivity using applied potential tomography.” Electronics Lett., Vol. 19, 1983, 933–935.

    Google Scholar 

  5. A. Surowiec et al., “Dielectric properties of breast carcinoma and the surrounding tissues.” IEEE Trans. BME., Vol. 35, 1988, pp. 256–263.

    Google Scholar 

  6. L. M. Newcomer et al., “Detection method and breast carcinoma histology.” Cancer, Vol. 95, 2002, pp. 470–477.

    Article  Google Scholar 

  7. N. Polydorides and W. R. B. Lionheart, “A Matlab toolkit for three-dimensional impedance tomography: A contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software Project.” Meas. Sci. Tech., Vol. 13, 2002, pp. 1871–1883.

    Google Scholar 

  8. M. T. Markova, 10 MHz Electrical Impedance Spectroscopy System. Ph.D. dissertation, Thayer School of Engineering, Dartmouth College, Hanover, NH, 2002.

    Google Scholar 

  9. D. Isaacson, “Distinguishability of conductivities by electric current computed tomography.” IEEE Trans. Med. Imag., Vol. MI-5, 1986, pp. 91–95.

    Google Scholar 

  10. T. E. Kerner, Electrical Impedance Tomography for Breast Imaging. Ph.D. thesis, Thayer School of Engineering, Dartmouth College, Hanover, NH, June 2001.

    Google Scholar 

  11. N. K. Soni, H. Dehghani, A. Hartov, K. D. Paulsen, “A novel data calibration scheme for electrical impedance tomography.” Physiol. Meas., Vol. 24, 2003, 421–435.

    Article  Google Scholar 

  12. H. Dehghani et al., “Multiwavelength three-dimensional near-infrared tomography of the breast: Initial simulation, phantom, and clinical results.” App. Opt, Vol. 42, 2003, pp. 135–145.

    Google Scholar 

  13. A. Gibson et al., “Optical tomography of a realistic neonatal head phantom.” App. Opt., Vol. 42(1), 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Dehghani, H., Soni, N.K. (2005). Electrical Impedance Spectroscopy: Theory. In: Alternative Breast Imaging. The Kluwer International Series in Engineering and Computer Science, vol 778. Springer, Boston, MA. https://doi.org/10.1007/0-387-23364-4_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-23364-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23363-5

  • Online ISBN: 978-0-387-23364-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics