Skip to main content
  • 585 Accesses

8.1 8.1 Introduction to the Rehabilitation of Movement

Human beings sometimes suffer from diseases and/or accidents which may leave them without the ability to move. In many such instances there is very little that medical efforts alone can do. However, these efforts can clearly benefit from engineering developments, notably if devices for electrical stimulation are applied. But, the biomedical engineer can also contribute to the movement-rehabilitation task in many other ways. Engineers with background in instrumentation, control, or signal processing can all be very useful. In light of systems based on functional electrical stimulation (FES), devices can be produced that allow for modulation of pulse width, frequency, and/or amplitude (Figure 8.1(a)). FES can be applied to the neuromuscular system (the engineer’s plant) by means of both surface and implanted electrodes. Once FES is applied, the dynamic response of the limb can be quantified in terms of forces, angles, and rotational...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • R. H. Tuttle. The pitted pattern of Laetoli feet. Natural History 3: 60–65, 1990.

    Google Scholar 

  • W. Calvin. The Ascent of Mind: Ice Age, Climates, and the Evolution of Intelligence. Bantam Books, NY, 1990.

    Google Scholar 

  • J. Gribbin and M. Gribbin. Children of the Ice: Climate and Human Origins. Basil Blackwell Inc., Oxford, 1990.

    Google Scholar 

  • V. T. Inman, H. J. Ralston and F. Todd. Human Walking. p. 11, Williams & Wilkins, Baltimore, 1981.

    Google Scholar 

  • C. L. Vaughan, B. L. Davis and J. C. O’Connor. Dynamics of Human Gait. Human Kinetic Publishers, Il, 1992.

    Google Scholar 

  • D. Winter. The Biomechanics and Motor Control of Human Gait. University of Waterloo Press, Ontario, 1987.

    Google Scholar 

  • M. Solomonow. Biomechanics and physiology of a practical functional neuromuscular stimulation powered walking orthosis for paraplegics. In: B. R. Stein, P. H. Peckham and D. P. Popovic (Eds), Neural prosthesis: Replacing Motor Function after Disease or Disability, cap. 10. Oxford University Press, Oxford, 1992.

    Google Scholar 

  • G. Szeckely. Development of limb movements: Embriological, physiological, and model studies. In: G. E. W. Wolstenholme and M. O’Connor (Eds), Ciba Foundation Symp. on Growth of Nervous System, pp. 77–93, Churchill, London, 1968.

    Google Scholar 

  • M. C. Wetzel and D. G. Stuart. Ensemble characteristics of cat locomotion and its neural control. Prog. Neurobiol. 7: 1–98, 1976.

    Article  Google Scholar 

  • R. Capildeo and A. Maxwell. Progress in Rehabilitation: Paraplegia. MacMillan Press, London, 1984.

    Google Scholar 

  • R. Guttman, Spinal Cord Injuries, Comprehensive Management and Research. Blackwell Scientific, Oxford, 1976.

    Google Scholar 

  • J. Perry. Rehabilitation of spasticity. In: R. G. Feldman, R. R. Young and W. P. Koella (Eds), Spasticity, Disordered Motor Control. New Book Medical Publishers, Chicago, 1981.

    Google Scholar 

  • B. Lukert. Osteoporosis-a review and update. Arch. Phys. Med. Rehabil. 63: 480–484, 1982.

    Google Scholar 

  • C. A. Philips, J. S. Petrofsky, D. M. Hendershot and D. Stafford. Functional eletrical exercise-a comprehensive approach for physical conditioning of the spinal cord injured patient. Orthopedics 7: 1112–1114, 1984.

    Google Scholar 

  • D. Popovic. Functional eletrical stimulation for lower extremities. In: B. R. Stein, P. H. Peckham and D. P. Popovic (Eds), Neural Prosthesis: Replacing Motor Function after Disease or Disability, cap. 11. Oxford University Press, Oxford, 1992.

    Google Scholar 

  • A. Bjorklund and U. Stenevi. Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol. Rev. 59: 62–99, 1979.

    Google Scholar 

  • D. Purves, W. J. Thompson and J. W. Yip. Reinervation of ganglia transplanted to the neck from different levels of the guinea pig sympathetic chain. J. Physiol. 313: 49–63, 1981.

    Google Scholar 

  • C. Meuli-Simmen, M. Meuli, G. M. Hutchins, C. D. Yingling, G. B. Timmel, M. R. Harrison and N. S. Adzick. The fetal spinal cord does not regenerate after in utero transection in a large mammalian model. Neurosurgery 39(3): 555–60, 1996.

    Google Scholar 

  • H. S. Goldsmith and J. C. de la Torre. Axonal regeneration after spinal cord transection and reconstruction. Brain Res. 589(2): 217–224, 1992.

    Article  Google Scholar 

  • J. B. Closson, J. E. Toerge, K. T. Ragnarsson, K. C. Parsons and D. P.P. Rehabilitation in spinal cord disorders. 3. Comprehensive management of spinal cord injury. Arch. Phys. Med. Rehabil. 72(4-S): S298–S308, 1991.

    Google Scholar 

  • D. I. Rowley and J. Edwards. Helping the paraplegic to walk. J. Bone and Joint Surg. 69: 173–174, 1987.

    Google Scholar 

  • B. Heller. The Production and Control of FES Swing-through Gait. Ph.D. Thesis, Bioengineering Unit, University of Strathclyde, Glasgow, 1992.

    Google Scholar 

  • J. Stallard, R. E. Major and J. H. Patrick. A review of the fundamental design problems of providing ambulation for paraplegic patients. Paraplegia 27: 70–75, 1989.

    Article  Google Scholar 

  • I. Bromley. Tetraplegia and Paraplegia: A guide for Phyosiotherapists. Churchill Livingston, Edinburgh, 1985.

    Google Scholar 

  • S. E. E. Functional assessment and training. In: H. V. Adkins (Ed.), Spinal Cord Injury. Churchill Livingston, NY, 1985.

    Google Scholar 

  • R. Douglas, P. F. Larson, R. D’Ambrosia and R. F. McCall. The LSU reciprocating gait orthosis. Orthopedics 6: 834–839, 1983.

    Google Scholar 

  • F. T. T. A brief history of neural prostheses for motor control of paralyzed extremities. In: B. R. Stein, P. H. Peckham and D. P. Popovic (Eds), Neural prosthesis: Replacing Motor Function after Disease or Disability, cap. 1. Oxford University Press, Oxford, 1992.

    Google Scholar 

  • S. J. Sarnoff, E. Hardenburgh and J. L. Whittenberger. Electrophrenic respiration. Am. J. Physiol. 155: 1, 1948.

    Google Scholar 

  • W. T. Liberson, H. J. Holmquest, D. Scot and M. Dow. Functional eletrotherapy: Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42: 101–105, 1961.

    Google Scholar 

  • D. E. Rumelhart, G. E. Hinton and R. J. J. Learning representation by backpropagation errors. Nature 323: pp. 533–536, 1986.

    Article  Google Scholar 

  • P. J. Werbos. Backpropagation through time: What it does and how to do it. Proc. IEEE 78(10): 1550–1560, 1990.

    Article  Google Scholar 

  • F. Sepulveda, D. M. Wells and C. L. Vaughan. A neural network representation of electromyography and joint dynamics in human gait. J. Biomech. 26: 101–109, 1993.

    Article  Google Scholar 

  • D. R. Hush and B. G. Horne. Progress in supervised neural networks: What’s new since Lippmann?. IEEE Sig. Proc. Mag. January, 8–39, 1993.

    Google Scholar 

  • F. Sepulveda, M. H. Granat and A. Cliquet. Two artificial neural systems for generation of gait swing by means of neuromuscular electrical stimulation. Med Eng. Phys. 19(1): 21–28, 1997.

    Article  Google Scholar 

  • F. Sepulveda, M. H. Granat and A. Cliquet Jr. Gait Restoration in a spinal cord injured subject via neuromuscular electrical stimulation controlled by an artificial neural network. Int. J. Artif. Org. 21(1): 49–62, 1998.

    Google Scholar 

  • F. Sepulveda, M. H. Granat and A. Cliquet Jr. An automatic on-line learning NMES system for gait swing restoration. Sixth Vienna International Workshop on Functional Electrical Stimulation, pp. 169–172, Austria, 1998.

    Google Scholar 

  • R. Davoodi and B. J. J. FES standing up in paraplegia: A comparative study of fixed parameter controllers. Proc. 18th Annu. Int. Conf. IEEE-EMBS, Amsterdam, paper # 784, 1996.

    Google Scholar 

  • R. Davoodi and B. J. Andrews. Computer simulation of FES standing up in paraplegia: A self-adaptive fuzzy controller with reinforcement learning. IEEE Trans. Rehab. Eng. 6(2): 151–161, 1998.

    Article  Google Scholar 

  • R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning 3: 9–44, 1988.

    Google Scholar 

  • A. Kostov, T. Sinkjaer and B. Upshaw. Gait event discrimination using ALNs for control of FES in foot-drop problem. Proc. 18th Annu. Int. Conf. IEEE-EMBS, Amsterdam, pp. 1042–1043, 1996.

    Google Scholar 

  • A. Kostov, B. J. Andrews, D. B. Popovic, R. Stein and W. W. Armstrong. Machine learning in control of Functional Electrical Stimulation systems for locomotion. IEEE Trans. Biomed. Eng. 42(6): 542–551, 1995.

    Article  Google Scholar 

  • K. Tong and M. H. H. Using neural networks to generate optimum FES gait controllers. Sixth Vienna International Workshop on Functional Electrical Stimulation, pp. 165–168, Austria, 1998.

    Google Scholar 

  • J. J. Chen, N. Y. Yu, D. G. Hau, B. T. Ann and G. C. Chang. Applying fuzzy logic to control cyclic movement induced by FES. IEEE Trans. Rehab. Eng. 5: 158–169, 1997.

    Article  Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Artificial Neural Network Techniques in Human Mobility Rehabilitation. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics