Skip to main content
  • 604 Accesses

4.1 4.1 Introduction

Inherent limitations of devices for image visualization and printing (displays, printers) often require quantization of two-dimensional digital images to a limited number of grayscale levels. The case of bilevel quantization is of particular interest when an image is to be printed on a printer that can only produce black-and-white pictures. Digital halftoning [186] means image quantization by algorithms that exploit properties of the vision system to create the illusion of continuous tone. Many related neurobiological aspects of vision are discussed in [73]. Digital halftoning has been applied in such areas as digital holography [161], desktop publishing [171], image compression/restoration [70], non-uniform sampling [118], video rendering [190], pattern recognition [64], verification of monochrome vision models [60,105], and three-dimensional computer graphics [174]. Numerous digital halftoning techniques have been studied, yet very few papers deal with the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    * This work was partially supported by NSF Grant CCR 94-02780.

References

  • J.P. Allebach. Visual model-based algorithms for halftoning images. Proc. of SPIE: Image Quality 310: 151–157, 1981.

    Google Scholar 

  • J.P. Allebach, T.J. Flohr, D.P. Hilgenberg, C.B. Atkins and C.A. Bouman. Model-based halftoning via Direct Binary Search. IS&T’s 47th Annual Conference/ICPS 476–482, 1994.

    Google Scholar 

  • D. Anastassiou. Neural net based digital halftoning of images. Proc. of the IEEE International Symposium on Circuits and Systems, IEEE, pp. 507–510. New York, 1988.

    Google Scholar 

  • M. Analoui and J.P. Allebach. Model based halftoning using Direct Binary Search. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display III 1666: 96–108, 1992.

    Google Scholar 

  • D. Anastassiou. Error diffusion coding for A/D conversion. IEEE Transactions on Circuits and Systems 36(9): 1175–1186, 1989.

    MathSciNet  Google Scholar 

  • D. Anastassiou and S. Kollias. Digital image halftoning using neural networks. Proc. of SPIE: Visual Communications and Image Processing 1001: 1062–1069, 1988.

    Google Scholar 

  • P.R. Bakić, B.D. Reljin, N.S. Vujović, D.P. Brzaković and P.D. Kostić. Multilayer transient-mode CNN for solving optimization problems. Proc. of CNNA ’96: Fourth IEEE International Workshop on Cellular Neural Networks and their Applications pp. 25–30, 1996.

    Google Scholar 

  • P.R. Bakić, N.S. Vujović, D.P. Brzaković, P.D. Kostić and B.D. Reljin. CNN paradigm based multilevel halftoning of digital images. IEEE Transactions on Circuits and Systems–II 44(1): 50–53, 1997.

    Google Scholar 

  • C.J. Bartleson and E.J. Breneman. Brightness perception in complex fields. Journal of the Optical Society of America 57(7): 953–957, 1967.

    Google Scholar 

  • B.E. Bayer. An optimum method for two-level rendition of continuous-tone pictures, Conference Record. IEEE International Conference on Communications 1, IEEE, New York pp. (26–11)–(26–15), 1973.

    Google Scholar 

  • T. Bernard. From sigma-delta modulation to digital halftoning of images. ICASSP-91: 1991 IEEE International Conference on Acoustics, Speech, and Signal Processing 4: 2805–2808, 1991.

    Google Scholar 

  • C. Billotet-Hoffman and O. Bryngdahl. On the error diffusion technique for electronic halftoning. Proc. of Society for Information Display 24(3): 253–258, 1983.

    Google Scholar 

  • F. Bock, H. Walter and M. Wilde. A new distortion measure for the assessment of decoded images adapted to human perception. Proc. of IWISP ’96: Third International Workshop on Image and Signal Processing on the Theme of Advances in Computational Intelligence, pp. 215–218, 1996.

    Google Scholar 

  • M. Broja and O. Bryngdahl. Quantization noise in electronic halftoning. Journal of the Optical Society of America A 10(4): 554–560, 1993.

    Google Scholar 

  • M. Broja, K. Michalowski and O. Bryngdahl. Error diffusion concept for multi-level quantization. Optics Communications 79: 280–284, 1990.

    Google Scholar 

  • M. Broja, F. Wyrowski and O. Bryngdahl. Digital halftoning by iterative procedure. Optics Communications 69(3,4): 205–210, 1989.

    Google Scholar 

  • A.E. Burgess, R.F. Wagner and R.J. Jennings. Human signal detection performance for noisy medical images. Proceedings of the International Workshop on Physics and Engineering in Medical Images, IEEE, New York, 1982.

    Google Scholar 

  • F.W. Campbell, H.S. Carpenter and J.Z. Levinson. Visibility of aperiodic patterns compared with that of sinusoidal gratings. Journal of Physiology (London) 190: 283–298, 1969.

    Google Scholar 

  • F.W. Campbell, J.J. Kulikowski and J.Z. Levinson. The effect of orientation on the visual resolution of gratings. Journal of Physiology (London) 187: 427–436, 1966.

    Google Scholar 

  • F.W. Campbell and J.J. Kulikowski. Orientational selectivity of the human visual system. Journal of Physiology (London) 187: 437–445, 1966.

    Google Scholar 

  • J.C. Candy and G.C. Temes (Eds). Oversampling Delta-Sigma Data Converters. IEEE Press, New York, 1992.

    Google Scholar 

  • P. Carnevali, L. Coletti and S. Patarnello. Image processing by simulated annealing. IBM Journal of Research and Development 29(6): 569–579, 1985.

    Google Scholar 

  • S.S. Chan and R. Nerheim-Wolfe. An empirical assessment of selected color-quantizing algorithms. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display V 2179: 298–309, 1994.

    Google Scholar 

  • P.A. Chochia. Image enhancement using sliding histograms. Computer Vision, Graphics, and Image Processing 44: 211–219, 1988.

    Google Scholar 

  • W. Chou, P.W. Wong and R.M. Gray. Multistage sigma-delta modulation. IEEE Transactions on Information Theory 35(4): 784–796, 1989.

    MathSciNet  MATH  Google Scholar 

  • A.J. Cole. Halftoning without dither or edge enhancement. The Visual Computer 7: 232–246, 1991.

    Google Scholar 

  • P.C. Cosman, R.M. Gray and R.A. Olshen. Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc. of the IEEE 82(6): 919–932, 1994.

    Google Scholar 

  • K.R. Crounse, T. Roska and L.O. Chua. Image Halftoning with Cellular Neural Networks. IEEE Transactions on Circuits and Systems 40: 267–283, 1993.

    MATH  Google Scholar 

  • J. Dalton. Perception of binary texture and the generation of stochastic halftone screens. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display VI 2411: 207–220, 1995.

    Google Scholar 

  • S. Daly. Subroutine for the Generation of a Two-Dimensional Human Visual Contrast Sensitivity Function, Easman Kodak Tech. Rep. No. 233203Y, 1987.

    Google Scholar 

  • S. Daly. The visible differences predictor: an algorithm for the assessment of image fidelity. In: A.B. Watson (Ed.), Digital Images and Human Vision, pp. 179–206. The MIT Press, Cambridge, MA. 1993.

    Google Scholar 

  • Densitometry and Dot Gain Technology Report, PrePRESS.

    Google Scholar 

  • A.M. Derrington. Distortion products in geniculate X-cells: a physiological basis for masking by spatially modulated gratings? Vision Research 27(8): 1377–1386, 1987.

    Google Scholar 

  • A.M. Derrington and D.R. Badcock. Detection of spatial beats: non-linearity or contrast increment detection? Vision Research 26(2): 343–348, 1986.

    Google Scholar 

  • M.P. Eckstein, A.J. Ahumada, Jr. and A.B. Watson. Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise. Journal of the Optical Society of America A 14(9): 2406–2419, 1997.

    Google Scholar 

  • R. Ellis and D. Gulick. Calculus with Analytic Geometry. Harcourt Brace Jovanovich, San Diego, third edition, 1986.

    Google Scholar 

  • R. Eschbach. Pulse-density modulation on rastered media: combining pulse-density modulation and error diffusion. Journal of the Optical Society of America A 7(4): 708–716, 1990.

    Google Scholar 

  • R. Eschbach. Reduction of artifacts in error diffusion by means of input-dependent weights. Journal of Electronic Imaging 2(4): 352–358, 1993.

    Google Scholar 

  • R. Eschbach. Error diffusion algorithm with homogeneous response in highlight and shadow areas. Journal of Electronic Imaging 6(3): 348–356, 1997.

    Google Scholar 

  • R. Eschbach and R. Hauck. Binarization using a two-dimensional pulse-density modulation. Journal of the Optical Society of America A 4(10): 1873–1878, 1987.

    Google Scholar 

  • R. Eschbach and K.T. Knox. Error-diffusion algorithm with edge enhancement. Journal of the Optical Society of America A 8(12): 1844–1850, 1991.

    Google Scholar 

  • A.M. Eskicioglu. Application of multidimensional quality measures to reconstructed medical images. Optical Engineering (Redondo Beach, CA) 35(3): 778–785, 1996.

    Google Scholar 

  • Z. Fan. Dot-to-dot error diffusion. Journal of Electronic Imaging 2(1): 62–66, 1993.

    MATH  Google Scholar 

  • W. Feller. An Introduction to Probability Theory and its Application, Vol. 2. John Wiley & Sons, New York, second edition, 1971.

    Google Scholar 

  • F. Fetthauer. Objectabhängige Kontrolle von lokalen Quantisierungsalgorithmen. Shaker Verlag, Aachen, 1997.

    Google Scholar 

  • F. Fetthauer and O. Bryngdahl. Quantization noise and the error diffusion algorithm. Journal of Electronic Imaging 3(1): 37–44, 1994.

    Google Scholar 

  • F. Fetthauer and O. Bryngdahl. On the error diffusion algorithm: object dependence of the quantization noise. Optics Communications 120: 223–229, 1995.

    Google Scholar 

  • F. Fetthauer and O. Bryngdahl. Texture control in image quantization by iterative wavelet transform algorithms. Journal of the Optical Society of America A 13(1): 12–17, 1996.

    Google Scholar 

  • F. Fetthauer and O. Bryngdahl. Image-dependent quantization by iterative wavelet agorithms. Journal of the Optical Society of America A 13(12): 2348–2354, 1996.

    Google Scholar 

  • R.W. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale. SID 75 Digest, Society for Information Display 36–37, 1975.

    Google Scholar 

  • R.W. Floyd and L. Steinberg. An adaptive algorithm for spatial greyscale. Proc. of Society for Information Display 17(2): 75–77, 1976.

    Google Scholar 

  • J.D. Foley, A. van Dam, S.K. Feiner and T.F. Hughes. Computer Graphics: Principles and Practice, Addison-Wesley, Reading, MA, second edition, 1990.

    Google Scholar 

  • I. Galton. Granular quantization noise in the first-order delta-sigma modulator. IEEE Transactions on Information Theory 39(6): 1944–1956, 1993.

    MATH  Google Scholar 

  • J.D. Gaskill. Linear Systems, Fourier Transforms, and Optics. John Wiley & Sons, New York, 1978.

    Google Scholar 

  • R. Geist, R. Reynolds and D. Suggs. A Markovian framework for digital halftoning. ACM Transactions on Graphics 12(20): 136–159, 1993.

    MATH  Google Scholar 

  • M.A. Georgeson and T.M. Shackleton. Perceived contrast of gratings and plaids: non-linear summation across oriented filters. Vision Research 34(8): 1061–1075, 1994.

    Google Scholar 

  • G. Goertzel and G.R. Thompson. Digital halftoning on the IBM 4250 printer. IBM Journal of Research and Development 31(1): 2–15, 1987.

    Google Scholar 

  • R. Gonzalez and P. Wintz. Digital Image Processing, Addison-Wesley, Reading, MA, second edition, 1987.

    Google Scholar 

  • R.M. Gray. Oversampled sigma-delta modulation. IEEE Transactions on Communications 35(5): 481–489, 1987.

    MATH  Google Scholar 

  • T.A. Grogan and D. Keene. Image quality evaluation with a contour-based perceptual model. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display III 1666: 188–197, 1992.

    Google Scholar 

  • S. Grossberg and D. Todorović. Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena. In: S. Grossberg (Ed.), Neural Networks and Natural Intelligence, pp. 127–194. The MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  • D.A. Gusev. Anti-Correlation Digital Halftoning, TR No. 513, Computer Science Department, Indiana University, Bloomington (1998) 87 pages, ftp.cs.indiana.edu/pub/techreports/TR513.ps.Z

    Google Scholar 

  • D.A. Gusev. Anti-Correlation Digital Halftoning by Generalized Russian Roulette. IS&T’s PICS ’99: The 52nd Annual Conference on Image Processing, Image Quality, Image Capture Systems, Savannah, GA April 25–28, 1999) pp. 327–332.

    Google Scholar 

  • D.A. Gusev, G.Y. Milman and E.A. Sandler. Principles of optimal rasters application to pattern recognition problems. In: N.N. Evtikhiev (Ed.), Voprosy Kibernetiki, Ustroystva i Sistemy (MIREA Transactions), pp. 18–29. Moscow Institute of Radioengineering, Electronics, and Automation, Moscow, 1992 [in Russian].

    Google Scholar 

  • C.F. Hall and E.L. Hall. A nonlinear model for the spatial characteristics of the human visual system. IEEE Transactions on Systems, Man, and Cybernetics, 7(3): 161–170, 1977.

    Google Scholar 

  • P. Hamill. Line printer modification for better grey level pictures. Computer Graphics and Image Processing 6: 485–491, 1977.

    Google Scholar 

  • N. He, F. Kuhlmann, A. Buzo. Multi-loop sigma-delta quantization. IEEE Transactions on Information Theory 38(2): 1015–1028, 1992.

    MATH  Google Scholar 

  • S. Hecht. A theory of visual intensity discrimination. Journal of General Physiology 18: 767–789, 1935.

    Google Scholar 

  • P.S. Heckbert. Color image quantization for frame buffer display. Computer Graphics (Proc. of SIGGRAPH ’82) 16(3): 297–307, 1982.

    Google Scholar 

  • S. Hein and A. Zakhor. Halftone to continuous-tone conversion of error-diffusion coded images. IEEE Transactions on Image Processing 4(2): 209–216, 1995.

    Google Scholar 

  • K. Hosaka. A new picture quality evaluation method. Proceedings of the International Picture Coding Symposium, pp. 17–18. Tokyo, Japan, 1986.

    Google Scholar 

  • Y.C. Hsueh, M.G. Chern and C.H. Chu. Image requantization by cardinality distribution. Computers & Graphics 15(3): 397–405, 1991.

    Google Scholar 

  • D.H. Hubel. Eye, Brain, and Vision, Scientific American Library, New York, 1988.

    Google Scholar 

  • H. Ikeda, W. Dei and Y. Higaki. A study on colorimetric errors caused by quantizing color information. IEEE Transactions on Instrumentation and Measurement 41(6): 845–849, 1992.

    Google Scholar 

  • B. Jähne. Digital Image Processing: Concepts, Algorithms, and Scientific Applications. Springer-Verlag, Berlin, third edition, 1995.

    MATH  Google Scholar 

  • A.K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  • J.F. Jarvis, C.N. Judice and W.H. Ninke. A survey of techniques for the display of continuous-tone pictures on bilevel displays. Computer Graphics and Image Processing 5(1): 13–40, 1976.

    Google Scholar 

  • J.F. Jarvis and C.S. Roberts. A new technique for displaying continuous tone images on a bilevel display. IEEE Transactions on Communications 24: 891–898, 1976.

    Google Scholar 

  • D.B. Judd. Basic Correlates of the Visual Stimulus. In: S.S. Stevens (Ed.), Handbook of Experimental Psychology, John Wiley & Sons, pp. 811–867, New York, 1951.

    Google Scholar 

  • D.B. Judd. Hue, saturation, and lightness of surface colors with chromatic illumination. Journal of the Optical Society of America 30(1): 2–32, 1940.

    Google Scholar 

  • B. Julesz and J.R. Bergen. Textons, the fundamental elements in preattentive vision and perception of textures. The Bell System Technical Journal 62(6): 1619–1645, 1983.

    Google Scholar 

  • I. Katsavounidis and C.-C.J. Kuo. A multiscale error diffusion technique for digital halftoning. IEEE Transactions on Image Processing 6(3): 483–490, 1997.

    Google Scholar 

  • C. Kim, S. Kim, Y. Seo and I. Kweono. Model-Based Color Halftoning Techniques on Perceptually Uniform Color Spaces, IS&T’s 47th Annual Conference/ICPS pp. 494–499, 1994.

    Google Scholar 

  • S.A. Klein. Image quality and image compression: a psychophysicist’s viewpoint. In: A.B. Watson (Ed.), Digital Images and Human Vision, pp. 73–88. The MIT Press, Cambridge, MA, 1993.

    Google Scholar 

  • K. Knowlton and L. Harmon. Computer-produced greyscales. Computer Graphics and Image Processing 1(1): 1–20, 1972.

    Google Scholar 

  • K.T. Knox. Edge enhancement in error diffusion. Advance Printing of Paper Summaries: SPSE’s 42nd Annual Conference, 310–313, 1989.

    Google Scholar 

  • K.T. Knox. Error image in error diffusion. Proc. of SPIE: Image Processing Algorithms and Techniques III 1657: 268–279, 1992.

    Google Scholar 

  • K.T. Knox and R. Eschbach. Threshold modulation in error diffusion. Journal of Electronic Imaging 2(3): 185–192, 1993.

    Google Scholar 

  • D.E. Knuth. Fonts for digital halftones. TUGboat 8(2): 135–160, 1987.

    Google Scholar 

  • D.E. Knuth. Digital halftones by dot diffusion. ACM Transactions on Graphics 6(4): 245–273, 1987.

    MATH  Google Scholar 

  • S. Kollias and D. Anastassiou. A unified neural network approach to digital image halftoning. IEEE Transactions on Signal Processing 39: 980–984, 1991.

    Google Scholar 

  • B.W. Kolpatzik, C.A. Bouman. Optimized error diffusion based on a human visual model. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display III 1666: 152–164, 1992.

    Google Scholar 

  • B.W. Kolpatzik, C.A. Bouman. Optimized error diffusion for image display. Journal of Electronic Imaging 1: 277–292, 1992.

    Google Scholar 

  • K. Kotani, Q. Gan, M. Miyahara and V.R. Algazi. Objective picture quality scale for color image coding. Proc. of ICIP-95: 1995 IEEE International Conference on Image Processing II pp. 133–136, 1995.

    Google Scholar 

  • T. Kurosawa and H. Kotera. Multi-level CAPIX algorithm for high quality image display. SID Japan Display pp. 616–619, 1989.

    Google Scholar 

  • T. Kurosawa, H. Tsuchiya, Y. Maruyama, H. Ohtsuka and K. Nakazato. A new bi-level reproduction of continuous tone images. Proc. of the Second IEE International Conference on Image Processing and its Applications, pp. 82–86, 1986.

    Google Scholar 

  • J.H. Ladd and J.E. Pinney. Empirical relationships with the Munsell value scale. Proc. of IRE (Correspondence) 43(9): 1137, 1955.

    Google Scholar 

  • C.-C. Lai and D.-C. Tseng. Printer model and least-squares halftoning using genetic algorithms. Journal of Imaging Science and Technology 42(3): 241–249, 1998.

    Google Scholar 

  • D.L. Lau, G.R. Arce and N.C. Gallagher. Green Noise Digital Halftoning, Proceedings of the IEEE 86(12): 2424–2444, 1998.

    Google Scholar 

  • H. Lee, A.H. Rowberg, M.S. Frank, H.S. Choi and Y. Kim. Subjective evaluation of compressed image quality. Proc. of SPIE: Image Capture, Formatting, and Display 1653: 241–251, 1992.

    Google Scholar 

  • M.Y. Lermontov. Hero of Our Time, Otechestvennye Zapiski, Saint Petersburg 1839.

    Google Scholar 

  • P. Li and J.P. Allebach. Look-up-table based halftoning algorithm. Proc. of ICIP-98: 1998 IEEE International Conference on Image Processing VI 1998.

    Google Scholar 

  • D.J. Lieberman and J.P. Allebach. Digital halftoning using the Direct Binary Search algorithm. Proc. of the Fifth International Conference on High Technology: Imaging Science and Technology, Evolution and Promise, pp. 114–124. Chiba, Japan, 1996.

    Google Scholar 

  • J.O. Limb. Design of dither waveforms for quantized visual signals. Bell System Technical Journal 48(9): 2555–2582, 1969.

    Google Scholar 

  • Q. Lin. Halftone image quality analysis based on a human vision model. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display IV 1913: 378–389, 1993.

    Google Scholar 

  • Q. Lin. Improving halftone uniformity and tonal response. Proc. of IS&T’s Tenth International Congress on Advances in Non-Impact Printing Technologies 377–380, 1994.

    Google Scholar 

  • Q. Lin. Screen Design for Printing. Proc. of the 1995 IEEE International Conference on Image Processing pp. 331–334, 1995.

    Google Scholar 

  • B. Lippel and M. Kurland. The effect of dither on luminance quantization of pictures. IEEE Transactions on Communications Technology 19(6): 879–888, 1971.

    Google Scholar 

  • S.P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2): 129–137, 1982..

    MathSciNet  MATH  Google Scholar 

  • J.L. Mannos and D.J. Sakrison. The effects of a visual fidelity criterion on the encoding of images. IEEE Transactions on Information Theory 20(4): 525–536, 1974.

    MATH  Google Scholar 

  • H. Marmolin. Subjective MSE measures. IEEE Transactions on Systems, Man, and Cybernetics 16(3): 486–489, 1986.

    Google Scholar 

  • S.L. Marple, Jr. Digital Spectral Analysis with Applications, Prentice-Hall, Englewood Cliffs, NJ 1987.

    Google Scholar 

  • S. Matsumoto and B. Liu. Analytical fidelity measures in the characterization of halftone processes. Journal of the Optical Society of America 70(10): 1248–1254, 1980.

    Google Scholar 

  • J. Max. Quantizing for Minimum Distortion. IRE Transactions on Information Theory 6(1): 7–12, 1960.

    MathSciNet  Google Scholar 

  • R. Miller and C. Smith. Mean-preserving multilevel halftoning algorithm. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display IV 1913: 367–377, 1993.

    Google Scholar 

  • R. Miller and J.R. Sullivan. Color halftoning using error diffusion and a human visual system model, Advance Printing of Paper Summaries: SPSE’s 43rd Annual Conference pp. 149–152, 1990.

    Google Scholar 

  • G.Y. Milman. Principles of Delta-Sigma Modulation in Digital Devices for Image Processing, doctoral dissertation, Moscow Institute of Radioengineering, Electronics, and Automation (University of Technology), Russia, 1995.

    Google Scholar 

  • D.P. Mitchell. Generating antialiased images at low sampling densities. Computer Graphics (Proc. of SIGGRAPH ’87) 21(4): 65–72, 1987.

    Google Scholar 

  • T. Mitsa. Evaluation of halftone techniques using psychovisual testing and quantitative quality measures. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display III 1666: 177–187, 1992.

    Google Scholar 

  • T. Mitsa and J.R. Alford. Applications of fractal analysis in the evaluation of halftoning algorithms and a fractal-based halftoning scheme. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display V 2179: 195–206, 1994.

    Google Scholar 

  • T. Mitsa and K.J. Parker. Digital halftoning technique using a blue-noise mask. Journal of the Optical Society of America A 9(11): 1920–1929, 1992.

    Google Scholar 

  • K. Miyata, M. Saito, N. Tsumura and Y. Miyake. An evaluation of image quality for high quality digital halftoning: image analysis and evaluation of multi-level error diffusion. Proc. of SPIE: The 1997 IS&T/SPIE International Symposium on Electronic Imaging Science and Technology 3016: 176–183, 1997.

    Google Scholar 

  • J.B. Mulligan and A.J. Ahumada, Jr., Principled methods for color dithering based on models of the human visual system, SID Digital Technology Papers pp. 194–197, 1992.

    Google Scholar 

  • K.J. Myers and H.H. Barrett. Addition of a channel mechanism to the ideal-observer model. Journal of the Optical Society of America A 4(12): 2447–2457, 1987.

    Google Scholar 

  • K.J. Myers, H.H. Barrett, M.C. Borgstrom, D.D. Patton and G.W. Seeley. Effect of noise correlation on detectability of disk signals in medical imaging. Journal of the Optical Society of America A 2: 1752–1759, 1985.

    Google Scholar 

  • J. Nachmias and B.E. Rogowitz. Masking by spatially-modulated gratings. Vision Research 23(12): 1621–1629, 1983.

    Google Scholar 

  • R. Näsänen. Visibility of halftone dot textures. IEEE Transactions on Systems, Man, and Cybernetics 14(6): 920–924, 1984.

    Google Scholar 

  • N.B. Nill and B.H. Bouzas. Objective image quality measure derived from digital image power spectra. Optical Engineering (Redondo Beach, CA) 31(4): 813–825, 1992.

    Google Scholar 

  • S.R. Norsworthy, R. Schreier and G.C. Temes (Eds), Delta-Sigma Data Converters: Theory, Design, and Simulation, IEEE Press, New York (1997).

    Google Scholar 

  • H.C. Nothdurft. Different effects from spatial frequency masking in texture segregation and texture detection tasks. Vision Research 31(2): 299–320, 1991.

    Google Scholar 

  • A.V. Oppenheim and J.S. Lim. The importance of phase in signals. Proc. of the IEEE 69: 529–541, 1981.

    Google Scholar 

  • A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1989).

    MATH  Google Scholar 

  • T.N. Pappas. Digital halftoning: a model-based perspective. International Journal of Imaging Systems and Technology 7(2): 110–120, 1996.

    MathSciNet  Google Scholar 

  • T.N. Pappas, D.L. Neuhoff. Least-squares model-based halftoning. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display III 1666: 165–176, 1992.

    Google Scholar 

  • T.N. Pappas, C.-K. Dong, D.L. Neuhoff. Measurement of printer parameters for model-based halftoning. Journal of Electronic Imaging 2(3): 193–204, 1993.

    Google Scholar 

  • K.J. Parker, T. Mitsa and R. Ulichney. Digital halftone techniques in medical imaging, Proc. of the Sixth International Congress on Advances in Non-Impact Printing Technologies pp. 853–858, 1990.

    Google Scholar 

  • D.E. Pearson. Transmission and Display of Pictorial Information, John Wiley & Sons, New York (1975).

    Google Scholar 

  • E. Peli. Contrast in complex images. Journal of the Optical Society of America A 7(10): 2032–2040, 1990.

    Google Scholar 

  • E. Peli. In search of a contrast metric: matching the perceived contrast of Gabor patches at different phases and bandwidths. Vision Research 37(23): 3217–3224, 1997.

    Google Scholar 

  • B. Perry and M.L. Mendelsohn. Picture generation with a standard line printer. Communications of the ACM 7(5): 311–313, 1964.

    Google Scholar 

  • L.N. Piotrowski and F.W. Campbell. A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase. Perception 11: 337–346, 1982.

    Google Scholar 

  • P. Pirsch, A.N. Netravali. Transmission of gray level images by multilevel dither techniques. Computers & Graphics 7(1): 31–44, 1983.

    Google Scholar 

  • S.M. Pizer, J.B. Zimmerman and E.V. Staab. Adaptive grey-level assignment in CT scan display. Journal of Computational Tomography 8: 300–308, 1984.

    Google Scholar 

  • W.K. Pratt. Digital Image Processing, John Wiley & Sons, New York (1978).

    Google Scholar 

  • I.G. Priest, K.S. Gibson and H.J. McNicholas. An Examination of the Munsell Color System, I. Spectral and Total Reflection and the Munsell Scale of Value, U.S. National Bureau of Standards, Technical Paper 167 (1920).

    Google Scholar 

  • F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina, Holden-Day, San Francisco (1965).

    Google Scholar 

  • J.M. Risch, a UseNet posting quote, newsgroups comp.dsp, comp.sys.ibm.pc. soundcard.tech, comp.speech, alt.sci.physics.acoustics (1996).

    Google Scholar 

  • P.G. Roetling and T.M. Holladay. Tone reproduction and screen design for pictorial electrographic printing. Journal of Applied Photographic Engineering 5(4): 179–182, 1979.

    Google Scholar 

  • D.F. Rogers. Procedural Elements for Computer Graphics, McGraw-Hill, New York (1985).

    Google Scholar 

  • M.B. Sachs, J. Nachmias and J.G. Robson. Spatial-frequency channels in human vision. Journal of the Optical Society of America 61(9): 1176–1186, 1971.

    Google Scholar 

  • H. Saito and N. Kobayashi. Evolutionary computation approaches to halftoning algorithm, Proc. of the First IEEE Conference on Evolutionary Computation pp. 787–791, 1994.

    Google Scholar 

  • D.J. Sakrison. Image coding applications of vision models. In: W.K. Pratt (Ed.), Image Processing Techniques, Academic Press, San Diego, CA pp. 21–71, 1979.

    Google Scholar 

  • D.J. Sakrison. On the role of the observer and a distortion measure in image transmission. IEEE Transactions on Communications 25(11): 1251–1267, 1977.

    MATH  Google Scholar 

  • E.A. Sandler, D.A. Gusev and G.Y. Milman. Hybrid algorithms for digital halftoning and their application to medical imaging. Computers & Graphics 21(1,6): 69–78, 859 (erratum), 1997.

    Google Scholar 

  • E.A. Sandler, D.A. Gusev, G.Y. Milman, M.L. Podolsky. Estimating from outputs of oversampled delta-sigma modulation. Signal Processing 59(3): 305–311, 1997.

    MATH  Google Scholar 

  • E.A. Sandler, G.Y. Milman and D.A. Gusev. New methods for computer-aided high-quality printing of halftone images, Proceedings of the International Exhibition-Seminar (Computational Geometry and Computer Graphics in Education), Nizhni Novgorod State University of Technology, Nizhni Novgorod (1993) p. 48 [in Russian].

    Google Scholar 

  • T. Scheermesser and O. Bryngdahl. Threshold accepting for constrained halftoning. Optics Communications 115(1,2): 13–18, 1995.

    Google Scholar 

  • T. Scheermesser and O. Bryngdahl. Texture metric of halftoning images. Journal of the Optical Society of America A 13(1): 18–24, 1996.

    Google Scholar 

  • T. Scheermesser and O. Bryngdahl. Spatially dependent texture analysis and control in digital halftoning. Journal of the Optical Society of America A 14(4): 827–835, 1997.

    Google Scholar 

  • M. Schroeder. Images from computers. IEEE Spectrum 6(3): 66–78, 1969.

    MathSciNet  Google Scholar 

  • M.A. Seldowitz, J.P. Allebach and D.W. Sweeney. Synthesis of digital holograms by Direct Binary Search. Applied Optics 26(14): 2788–2798, 1987.

    Google Scholar 

  • G. Sharma and H.J. Trussell. Digital color imaging. IEEE Transactions on Image Processing 6(7): 901–932, 1997.

    Google Scholar 

  • A.S. Sherstinsky. M-Lattice: A System for Signal Synthesis and Processing Based on Reaction-Diffusion, doctoral dissertation. The MIT, Cambridge, MA, 1994.

    Google Scholar 

  • A.S. Sherstinsky and R.W. Picard. Color halftoning with textem M-lattice. Proc. of ICIP-95: 1995 IEEE International Conference on Image Processing II pp. 335–338, 1995.

    Google Scholar 

  • P. Shirley. Discrepancy as a Quality Measure for Sample Distributions. In: F.H. Post and W. Barth (Eds), Proc. of Eurographics ’91. North Holland, Amsterdam pp. 183–194, 1991.

    Google Scholar 

  • B.L. Shoop and E.K. Ressler. Optimal error diffusion for digital halftoning using an optical neural network. Proc. of ICIP-94: 1994 IEEE International Conference on Image Processing II: 1036–1040, 1994.

    Google Scholar 

  • L.D. Silverstein, J.H. Krantz, F.E. Gomer, Y.-Y. Yeh and R.W. Monty. Effect of spatial sampling and luminance quantization on the image quality of color matrix displays. Journal of the Optical Society of America A 7(10): 1955–1969, 1990.

    Google Scholar 

  • K. Sloan. A hybrid scheme for color dithering. Proc. of SPIE: Human Vision and Electronic Imaging: Models, Methods, and Applications 1249: 238–248, 1990.

    Google Scholar 

  • K.E. Spaulding, R.L. Miller, J. Schildkraut. Methods for generating blue-noise dither matrices for digital halftoning. Journal of Electronic Imaging 6(2): 208–230, 1997.

    Google Scholar 

  • R. Steele. Delta Modulation Systems, Pentech Press, London; Halstead Press, New York (1975).

    Google Scholar 

  • G.A. Stephen. A comparison of selected digital halftoning techniques. Microprocessors and Microsystems 15: 249–255, 1991.

    Google Scholar 

  • R.L. Stevenson and G.R. Arce. Binary display of hexagonally sampled continuous-tone images. Journal of the Optical Society of America A 2: 1009–1013, 1985.

    Google Scholar 

  • P. Stucki. MECCA-a Multiple-Error Correcting Computation Algorithm for Bilevel Image Hardcopy Reproduction, Research Report RZ1060, IBM Research Laboratory, Zurich (1981).

    Google Scholar 

  • P. Stucki. 3D Halftoning. Proc. of SPIE: Imaging Science and Display Technologies 2949: 314–317, 1997.

    Google Scholar 

  • S. Sugiura and T. Makita. An improved multilevel error diffusion method. Journal of Imaging Science and Technology 39(6): 495–501, 1995.

    Google Scholar 

  • J. Sullivan, R. Miller and G. Pios. Image halftoning using a visual model in error diffusion. Journal of the Optical Society of America A 10(8): 1714–1724, 1993.

    Google Scholar 

  • J. Sullivan, L. Ray and R. Miller. Design of minimum visual modulation halftone patterns. IEEE Transactions on Systems, Man, and Cybernetics 21(1): 33–38, 1991.

    Google Scholar 

  • Y. Tadmor and D.J. Tolhurst. Both the phase and amplitude spectrum may determine the appearance of natural images. Vision Research 33: 141–145, 1993.

    Google Scholar 

  • C.C. Taylor, Z. Pizlo, J.P. Allebach and C.A. Bouman. Image quality assessment with a Gabor pyramid model of the human visual system. Proc. of SPIE: The 1997 IS&T/SPIE International Symposium on Electronic Imaging Science and Technology 3016: 58–69, 1997.

    Google Scholar 

  • M.G. A. Thomson and D.H. Foster. Role of second-and third-order statistics in the discriminability of natural images. Journal of the Optical Society of America A 14(9): 2081–2090, 1997.

    Google Scholar 

  • S. Thurnhofer and S.K. Mitra. Nonlinear detail enhancement of error-diffused images. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display V 2179: 170–181, 1994.

    Google Scholar 

  • D.J. Tolhurst, Y. Tadmor. Band-limited contrast in natural images explains the detectability of changes in the amplitude spectra. Vision Research 37(23): 3203–3215, 1997.

    Google Scholar 

  • A. Tremeau, M. Calonnier and B. Laget. Color quantization error in terms of perceived image quality. ICASSP-94: 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing 5: 93–96, 1994.

    Google Scholar 

  • T. Tuttass and O. Bryngdahl. Image halftoning: Fourier transform/neural net iteration. Optics Communications 99(1,2): 25–30, 1993.

    Google Scholar 

  • T. Tuttass and O. Bryngdahl. Neural learning algorithms for halftoning. Optics Communications 113: 360–364, 1995.

    Google Scholar 

  • R. Ulichney. Digital Halftoning. The MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  • R. Ulichney. Frequency analysis of ordered dither. Proc. of SPIE: Hard Copy Output 1079: 361–373, 1989.

    Google Scholar 

  • R. Ulichney. Filter design for void-and-cluster dither arrays. SID 94 Digest 809–812, 1994.

    Google Scholar 

  • R. Ulichney. The void-and-cluster method for dither array generation. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display IV 1913: 332–343, 1993.

    Google Scholar 

  • R. Ulichney. Video rendering. Digital Technical Journal 5(2): 9–18, 1993.

    Google Scholar 

  • U.S. Federal Standard 1037C: Glossary of Telecommunications Terms.

    Google Scholar 

  • L. Velho and J.de M. Gomes. Digital halftoning with space filling curves. Computer Graphics 25(4): 81–90, 1991.

    Google Scholar 

  • L.G. Wash and J.F. Hamilton, Jr. The design of a graphic arts halftone screening computer. Proc. of SPIE: Electronic Imaging Applications in Graphic Arts 1073: 26–60, 1989.

    Google Scholar 

  • A.B. Watson. Efficiency of a model human image code. Journal of the Optical Society of America A 4(12): 2401–2417, 1987.

    Google Scholar 

  • A.B. Watson and J.A. Solomon. Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A 14(9): 2379–2391, 1997.

    Google Scholar 

  • W. Watunyuta, C.H. Chu. A dither pattern ensemble method for digital halftoning. Optics Communications 129(5,6): 331–336, 1996.

    Google Scholar 

  • S. Weissbach and F. Wyrowski. Numerical stability of the error diffusion concept. Optics Communications 93: 151–155, 1992.

    Google Scholar 

  • J.S. Wisniewski, a UseNet posting, newsgroups comp.dsp, comp.sys.ibm.pc. soundcard.tech, comp.speech, alt.sci.physics.acoustics (1996).

    Google Scholar 

  • I.H. Witten and R.M. Neal. Using Peano curves for bilevel display of continuous-tone images. IEEE Computer Graphics and Applications 2(3): 47–52, 1982.

    Google Scholar 

  • P.W. Wong. Error diffusion with dynamically adjusted kernel. ICASSP-94: 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing 5: 113–116, 1994.

    Google Scholar 

  • P.W. Wong. Adaptive error diffusion and its application in multiresolution rendering. IEEE Transactions on Image Processing 5(7): 1184–1196, 1996.

    Google Scholar 

  • T. Woodlief, Jr. (Ed.), SPSE Handbook of Photographic Science and Engineering, John Wiley & Sons, New York (1973).

    Google Scholar 

  • M. Yao and K.J. Parker. Modified approach to the construction of a blue noise mask. Journal of Electronic Imaging 3(1): 92–97, 1994.

    Google Scholar 

  • J.I. Yellott, Jr. Implications of triple correlation uniqueness for texture statistics and the Julesz conjecture. Journal of the Optical Society of America A 10(5): 777–793, 1993.

    Google Scholar 

  • A. Zakhor, S. Lin and F. Eskafi. A new class of B/W halftoning algorithms. IEEE Transactions on Image Processing 2(4): 499–508, 1993.

    Google Scholar 

  • T. Zeggel, Lokal adaptive Halbtonverfahren, doctoral dissertation, University of Essen, Germany (1997).

    Google Scholar 

  • T. Zeggel and O. Bryngdahl. Halftoning with error diffusion on an image-adaptive raster. Journal of Electronic Imaging 3(3): 288–294, 1994.

    Google Scholar 

  • T. Zeggel and O. Bryngdahl. Halftoning with iterative convolution algorithm. Optics Communications 118(5,6): 484–490, 1995.

    Google Scholar 

  • T. Zeggel and O. Bryngdahl. Gradient-controlled iterative half-toning. Applied Optics 36(2): 423–429, 1997.

    Google Scholar 

  • T. Zeggel, S. Weissbach and O. Bryngdahl. Noise modification in iterative multi-level image quantization. Optics Communications 100: 67–71, 1993.

    Google Scholar 

  • S.K. Zeremba. The mathematical basis of Monte Carlo and quasi-Monte Carlo methods. SIAM Review 10(3): 303–314, 1968.

    MathSciNet  Google Scholar 

  • C. Zetzsche and G. Hauske. Multiple channel model for the prediction of subjective image quality. Proc. of SPIE: Human Vision, Visual Processing, and Digital Display 1077: 209–216, 1989.

    Google Scholar 

  • Y. Zhang and R.E. Webber. Space diffusion: an improved parallel halftoning technique using space-filling curves. Computer Graphics Proceedings 305–312, 1993.

    Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Digital Halftoning Algorithms for Medical Imaging. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics