Skip to main content

Mechanstic Factors Affecting Fenton Oxidations in Natural Waters

  • Chapter
Emerging Technologies in Hazardous Waste Management 8

Abstract

The use of Fenton’s reagent (Fe(II) + H2 O 2 yields hydroxyl radical) has been applied to remediation of contaminated soil sites and treatment of industrial waste streams. However, degradation of dissolved organic pollutants by Fenton’s reagent is strongly affected by thepresence of other dissolved species. Natural organic matter (NOM) exerts three main influences on hydroxyl radical mediated oxidation of pollutants: 1) reduction of hydroxyl radical concentration through scavenging, 2) reduction in hydroxyl radical formation rate and efficiency through iron binding or redox coupling, and 3) sequestering of pollutants away from hydroxyl radical through pollutant-NOM binding. Sequestering of pollutants away from hydroxyl radical appears to be a significant mechanism for reducing degradation efficiency. All three effects must be accounted for in developing models for in situ degradation. Furthermore, the effects observed in the presence of natural organic matter may be similar to effects of non-pollutant organic compounds present in industrial waste streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Biotechnology in Bioremediation of Pesticide Contaminated Sites,” J.S. Karns in Pesticide Waste Management, J. Bourke, A.S. Felsot, T.J. Gilding, J.K. Jensen, and J.N. Seiber, Eds., ACS Symposium Series #510, 1992, pp. 148–156.

    Google Scholar 

  2. Haggblom, M.M., Rivera, M.D., and Young, L.Y. Appl. Environ. Microbiol. 1993, 59, 1162–67.

    CAS  Google Scholar 

  3. Haugland, R.A., Schlemm, D.J., Lyons, R.P. III, Sferra, P.R., and Chaktabarty, A.M. Appl. Environ. Microbiol. 1990, 56, 1357–62.

    CAS  Google Scholar 

  4. Smith, LA. and Novak, J.T. Water Air Soil Pollution 1987, 33, 29–42.

    Article  CAS  Google Scholar 

  5. Crawford, R.L. and Mohn, W.W. Enz. Microb Technol. 1985, 7, 617–20.

    CAS  Google Scholar 

  6. Racke, K.D., Coats, J.R., and Titus, K.R. J. Environ. Sci. Health 1988, B23, 527–39.

    CAS  Google Scholar 

  7. Michalski, A., Metlitz, M.N., and Whitman, I.L. Ground Wat. Mon. Remed. 1995, 15, 90–100.

    CAS  Google Scholar 

  8. Butcher, J.B. and Gauthier, T.D. Ground Wat. 1994, 32, 71–78.

    Google Scholar 

  9. Brandes, D. and Farley, K.J. Wat. Environ. Res. 1993, 65, 869–78.

    CAS  Google Scholar 

  10. Martel, R., Gelinas,.J., Desonoyers,.E., and Masson, A. Ground Wat. 1993, 31, 789–800.

    CAS  Google Scholar 

  11. “Comparative Aspects of Advanced Oxidation Processes,” D.F. Ollis in Emerging Technologies in Hazardous Waste Management III, D.W. Tedder and F.G. Pohland, Eds., ACS Symposium Series #518, 1993, pp. 18–34.

    Google Scholar 

  12. Ollis, D.F., Pelizzetti, E., and Serpone, N. Environ. Sci. Technol. 1991, 25, 1523–29.

    Article  Google Scholar 

  13. Walling, C. Acc. Chem. Res. 1975, 8, 125–131.

    Article  CAS  Google Scholar 

  14. Riesz, P. and Kondo, T. Free Rad. Biol. Med. 1992, 13, 247–70.

    Article  CAS  Google Scholar 

  15. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B. J. Phys. Chem. Reference Data 1988, 17(2), 513–886.

    CAS  Google Scholar 

  16. Pignatello, J.J. Environ. Sci. Technol. 1992, 26, 944–51.

    Article  CAS  Google Scholar 

  17. “Toxic Pollutant Destruction,” P.A. Vella and J.A. Munder in Emerging Technologies in Hazardous Waste Management III, D.W. Tedder and F.G. Pohland, Eds., ACS Symposium Series #518, 1993, pp. 85–105.

    Google Scholar 

  18. Sun, Y. and Pignatello, J.J. J. Agric. Food Chem. 1992, 40, 322–27.

    Article  CAS  Google Scholar 

  19. Sun, Y. and Pignatello, J.J. J. Agric. Food Chem. 1993, 41, 308–12.

    CAS  Google Scholar 

  20. “Decomposition of Perchloroethylene and Polychlorinated Biphenyls with Fenton’s Reagent,” C. Sato, S.W. Leung, H. Bell, W.A. Burkett, and R.J. Watts in Emerging Technologies in Hazardous Waste Management III, D.W. Tedder and F.G. Pohland, Eds., ACS Symposium Series #518, 1993, pp. 343–356.

    Google Scholar 

  21. Lipezynska-Kochany, E., Sprah, G., and Harms, S. Chemosphere 1995, 30(1), 9–20.

    Google Scholar 

  22. Gau, S.H. and Chang, F.S. Water Sci. Technol. 1996, 34(7–8), 455–462.

    CAS  Google Scholar 

  23. Kim, Y.K. and Huh, I.R. Environ. Eng. Sci. 1997, 14(1), 73–79.

    Article  CAS  Google Scholar 

  24. Yeh, C.K. and Novak, J.T. Water Environ. Res. 1995, 67, 828–34.

    CAS  Google Scholar 

  25. Pignatello, J.J. and Chupa, G. Environ. Toxicology and Chem. 1994, 13, 423–27.

    CAS  Google Scholar 

  26. Ronen, Z., Horvathgordon, M., and Bollag, J.M. Environ. Toxicology and Chem. 1994, 13, 21–26.

    CAS  Google Scholar 

  27. Watts, R.J., Udell, M.D., and Monsen, R.M. Water Environ. Res. 1993, 65, 83–44.

    Google Scholar 

  28. Croft, S., Gilbert, B.C., Smith, J.R.L., Stell, J.K., and Anderson, W.R. J. Chem. Soc. PerkinTrans. 1992, 2, 153.

    Google Scholar 

  29. Puppo, A. Phytochem. 1992, 31, 85–88.

    CAS  Google Scholar 

  30. Zhou, X. and Mopper, K. Mar. Chem. 1990, 30, 71–88

    Article  CAS  Google Scholar 

  31. “Reaction of Oxygen Species in Natural Waters,” N.V. Blough and R.G. Zepp, in Reactive Oxygen Species in Chemistry, C.S. Foote and J.S. Valentine, Eds., Chapman and Hall, 1994.

    Google Scholar 

  32. Lindsey, M.E. and Tarr, M.A. Chemosphere 1999, in press.

    Google Scholar 

  33. McCarthy, J.F. and Jimenez, B.D. Environ. Sci. Technol. 1985, 19, 1072–76.

    Article  CAS  Google Scholar 

  34. Kalyanasundaram, K. and Thomas, J.K. J. Am. Chem. Soc. 1977, 99, 2039.

    Article  CAS  Google Scholar 

  35. Sedlak D.L. and Andren. A.W. Wat. Res. 1994, 28, 1207–15

    Article  CAS  Google Scholar 

  36. Lindsey, M.E. and Tarr, M.A. Environ. Sci. Technol. 1999, submitted.

    Google Scholar 

  37. Lindsey, M.E. and Tarr, M.A. Wat. Res. 1999, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tarr, M.A., Lindsey, M.E. (2002). Mechanstic Factors Affecting Fenton Oxidations in Natural Waters. In: Tedder, D.W., Pohland, F.G. (eds) Emerging Technologies in Hazardous Waste Management 8. Springer, Boston, MA. https://doi.org/10.1007/0-306-46921-9_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-46921-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46362-4

  • Online ISBN: 978-0-306-46921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics