Skip to main content
Log in

Analysis of the signal transduction properties of a module of spatial sensing in eukaryotic chemotaxis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The movement of cells in response to a gradient in chemical concentration—known as chemotaxis—is crucial for the proper functioning of uni-and multicellular organisms. How a cell senses the chemical concentration gradient surrounding it, and what signal is transmitted to its motion apparatus is known as gradient sensing. The ability of a cell to sense gradients persists even when the cell is immobilized (i.e., its motion apparatus is deactivated). This suggests that important features of gradient sensing can be studied in isolation, decoupling this phenomenon from the movement of the cell. A mathematical model for gradient sensing in Dictyostelium cells and neutrophils was recently proposed. This consists of an adaptation/spatial sensing module. This spatial sensing module feeds into an amplification module, magnifying the effects of the former. In this paper, we analyze the spatial sensing module in detail and examine its signal transduction properties. We examine the response of this module to several inputs of experimental and biological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon, U., M. G. Surette, N. Barkai and S. Leibler (1999). Robustness chemotaxis. Nature 397, 168–171.

    Article  Google Scholar 

  • Barkai, N. and S. Leibler (1997). Robustness in simple biochemical networks. Nature 387, 913–917.

    Article  Google Scholar 

  • Byrnes, C. I. and A. Isidori (1990). Output regulation of nonlinear systems. Autom. Control 35, 131–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Csete, M. E. and J. C. Doyle (2002). Reverse engineering of biological complexity. Science 295, 1664–1669.

    Article  Google Scholar 

  • Dallon, J. C. and H. G. Othmer (1998). A continuum analysis of the chemotactic signal seen by Dictyostelium discoideum. J. Theor. Biol. 194, 461–483.

    Article  Google Scholar 

  • Devreotes, P. N. (2001). Personal communication.

  • Fisher, P. R. (1990). Pseudopodium activation and inhibition signals in chemotactics by Dictyostelium discoideum amoebae. Semin. Cell Biol. 1, 87–97.

    Google Scholar 

  • Foxman, E. F., J. J. Campbell and E. C. Butcher (1997). Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139, 1349–1360.

    Article  Google Scholar 

  • Foxman, E. F., E. J. Kunkel and E. C. Butcher (1999). Integrating conflicting chemotactic signals: the role of memory in leukocyte navigation. J. Cell Biol. 147, 577–877.

    Article  Google Scholar 

  • Francis, B. A. and W. M. Wonham (1975). The internal model principle of control theory. Automatica 12, 457–465.

    Article  MathSciNet  Google Scholar 

  • Goldbeter, A. and D. E. Koshland Jr (1981). An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. 78, 6840–6844.

    Article  MathSciNet  Google Scholar 

  • Goldstein, R. E. (1996). Traveling wave chemotaxis. Phys. Rev. Lett. 77, 775–778.

    Article  Google Scholar 

  • Hartwell, L. H., J. J. Hopfield, S. Leibler and A. W. Murray (1999). From molecular to modular cell biology. Nature 402, C47–C52.

    Article  Google Scholar 

  • Janetopoulos, C., T. Jin and P. N. Devreotes (2001). Receptor mediated heterotrimeric G-proteins in living cells. Science 291, 2408–2411.

    Article  Google Scholar 

  • Jin, T., N. Zhang, Y. Long, C. A. Parent and P. N. Devreotes (2000). Dynamic localization of the G-protein βγ complex in living cells during chemotaxis. Science 287, 1034–1036.

    Article  Google Scholar 

  • Lauzeral, J., J. Halloy and A. Goldbeter (1997). Desynchronization of developmental path triggers formation of spiral waves of cAMP during Dictyostelium aggregation. Proc. Natl. Acad. Sci. 94, 9153–9158.

    Article  Google Scholar 

  • Levchenko, A. and P. A. Iglesias (2002). Models of eukaryotic gradient application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50–63.

    Google Scholar 

  • Meinhardt, H. (1999). Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867–2874.

    Google Scholar 

  • Narang, A., K. K. Subramanian and D. A Lauffenburger (2001). A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics. Ann. Biomed. Eng. 29, 677–691.

    Article  Google Scholar 

  • Palsson, E. and E. C. Cox (1996). Origin and evolution of circular waves and spirals in Dictyostelium discoideum territories. Proc. Natl. Acad. Sci. 93, 1151–1155.

    Article  Google Scholar 

  • Palsson, E., K. J. Lee, R. E. Goldstein, J. Franke, R. H. Kessin and E. C. Cox (1997). Selection for spiral waves in the social amoebae Dictyostelium. Proc. Natl. Acad. Sci. 94, 13719–13723.

    Google Scholar 

  • Parent, C. A. and P. N. Devreotes (1999). A cell’s sense of direction. Science 284, 765–770.

    Article  Google Scholar 

  • Postma, M. and P. J. M. Van Haastert (2001). A diffusion translocation model for gradient sensing by eukaryotic cells. Biophys. J. 81, 1314–1323.

    Article  Google Scholar 

  • Servant, G., O. D. Weiner, P. Herzmark, T. Balla, J. W. Sedat and H. R. Bourne (2000). Polarization of chemoattractor receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040.

    Article  Google Scholar 

  • Yi, T.-M., Y. Huang, M. I. Simon and J. C. Doyle (2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. 97, 4649–4653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, J., Iglesias, P.A. Analysis of the signal transduction properties of a module of spatial sensing in eukaryotic chemotaxis. Bull. Math. Biol. 65, 95–128 (2003). https://doi.org/10.1006/bulm.2002.0323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0323

Keywords

Navigation