Skip to main content
Log in

Competitive exclusion and coexistence of universal grammars

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Universal grammar (UG) is a list of innate constraints that specify the set of grammars that can be learned by the child during primary language acquisition. UG of the human brain has been shaped by evolution. Evolution requires variation. Hence, we have to postulate and study variation of UG. We investigate evolutionary dynamics and language acquisition in the context of multiple UGs. We provide examples for competitive exclusion and stable coexistence of different UGs. More specific UGs admit fewer candidate grammars, and less specific UGs admit more candidate grammars. We will analyze conditions for more specific UGs to outcompete less specific UGs and vice versa. An interesting finding is that less specific UGs can resist invasion by more specific UGs if learning is more accurate. In other words, accurate learning stabilizes UGs that admit large numbers of candidate grammars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfors, L. V. (1979). Complex Analysis, 3rd edn, McGraw-Hill.

  • Aitchinson, J. (1987). Words in the Mind: An Introduction to the Mental Lexicon, Oxford: Basil Blackwell.

    Google Scholar 

  • Andronov, A. A., E. A. Leontovich, I. I. Gordon and A. G. Maier (1971). Theory of Bifurcations of Dynamic Systems on a Plane, Jerusalem: Keter Press.

    Google Scholar 

  • Bickerton, D. (1990). Language and Species, Chicago: University of Chicago Press.

    Google Scholar 

  • Cangelosi, A. and D. Parisi (eds) (2001). Simulating the Evolution of Language, Springer.

  • Chomsky, N. (1965). Aspects of the Theory of Syntax, Cambridge, MA: MIT Press.

    Google Scholar 

  • Chomsky, N. (1972). Language and Mind, New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Ferrer i Cancho, R. and R. V. Solé (2001a). The small world of human language. Proc. R. Soc. Lond. B 268, 2261–2266.

    Article  Google Scholar 

  • Ferrer i Cancho, R. and R. V. Solé (2001b). Two regimes in the frequency of words and the origin of complex lexicons: Zipf’s law revisited. J. Quant. Linguistics 8, 165–173.

    Article  Google Scholar 

  • Ghazanfar, A. A. and M. D. Hauser (1999). The neuroethology of primate vocal communication: substrates for the evolution of speech. Trend. Cog. Sci. 3, 377–384.

    Article  Google Scholar 

  • Gibson, E. and K. Wexler (1994). Triggers. Linguistic Inquiry 25, 407–454.

    Google Scholar 

  • Gold, E. M. (1967). Language identification in the limit. Information Control 10, 447–474.

    Article  MATH  Google Scholar 

  • Grassly, N., A. von Haesler and D. C. Krakauer (2000). Error, population structure and the origin of diverse sign systems. J. Theor. Biol. 206, 369–378.

    Article  Google Scholar 

  • Hauser, M. D. (1996). The Evolution of Communication, Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Hauser, M. D., E. L. Newport and R. N. Aslin (2001). Segmentation of the speech stream in a nonhuman primate: statistical learning in cotton-top tamarins. Cognition 78, B53–B64.

    Article  Google Scholar 

  • Hofbauer, J. and K. Sigmund (1998). Evolutionary Games and Population Dynamics, Cambridge University Press.

  • Hurford, J. R., M. Studdert-Kennedy and C. Knight (eds) (1998). Approaches to the Evolution of Language, Cambridge University Press.

  • Jackendoff, R. (1999). Possible stages in the evolution of the language capacity. Trend. Cog. Sci. 3, 272–279.

    Article  Google Scholar 

  • Kirby, S. (2001). Spontaneous evolution of linguistic structure: an iterated learning model of the emergence of regularity and irregularity. IEEE Trans. Evol. Comput. 5, 102–110.

    Article  Google Scholar 

  • Komarova, N. L., P. Niyogi and M. A. Nowak (2001). The evolutionary dynamics of grammar acquisition. J. Theor. Biol. 209, 43–59.

    Article  Google Scholar 

  • Krakauer, D. C. (2001). Kin imitation for a private sign system. J. Theor. Biol. 213, 145–157.

    Article  Google Scholar 

  • Lachmann, M., S. Szamado and C. T. Bergstrom (2001). Cost and conflict in animal signals and human language. Proc. Natl. Acad. Sci. USA 98, 13189–13194.

    Google Scholar 

  • Lai, C. S. L., S. E. Fisher, J. A. Hurst, F. Vargha-Khadem and A. P. Monaco (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519–523.

    Article  Google Scholar 

  • Lieberman, P. (1984). The Biology and Evolution of Language, Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lightfoot, D. (1991). How to Set Parameters: Arguments from Language Change, Cambridge, MA: MIT Press.

    Google Scholar 

  • Lightfoot, D. (1999). The Development of Language: Acquisition, Changes and Evolution, Blackwell Publishers.

  • May, R. M. (2001). Stability and Complexity in Model Ecosystems, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Mitchener, W. G. (2002). Bifurcation analysis of the fully symmetric language dynamical equation. J. Math. Biol. (accepted).

  • Niyogi, P. (1998). The Informational Complexity of Learning, Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Niyogi, P. and R. C. Berwick (1996). A language learning model for finite parameter spaces. Cognition 61, 161–193.

    Article  Google Scholar 

  • Nowak, M. A. and D. C. Krakauer (1999). The evolution of language. Proc. Natl. Acad. Sci. USA 96, 8028–8033.

    Article  Google Scholar 

  • Nowak, M. A., N. L. Komarova and P. Niyogi (2001). Evolution of universal grammar. Science 291, 114–118.

    Article  MathSciNet  Google Scholar 

  • Nowak, M. A., N. L. Komarova and P. Niyogi (2002). Computational and evolutionary aspects of language. Nature 417, 611–617.

    Article  Google Scholar 

  • Nowak, M. A., J. Plotkin and V. A. A. Jansen (2000). Evolution of syntactic communication. Nature 404, 495–498.

    Article  Google Scholar 

  • Pinker, S. (1990). The Language Instinct, New York: W. Morrow and Company.

    Google Scholar 

  • Pinker, S. and A. Bloom (1990). Natural language and natural selection. Behav. Brain Sci. 13, 707–784.

    Google Scholar 

  • Ramus, F., M. D. Hauser, C. Miller, D. Morris and J. Mehler (2000). Language discrimination by human newborns and by Cotton-Top tamarin monkeys. Science 288, 349–351.

    Article  Google Scholar 

  • Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos, Reading, MA: Perseus Books.

    Google Scholar 

  • Studdert-Kennedy, M. (2000). Evolutionary implications of the particulate principle: Imitation and the dissociation of phonetic form from semantic function, in The Evolutionary Emergence of Language: Social Function and the Origins of Linguistic Form, C. Knight, J. R. Hurford and M. Studdert-Kennedy (Eds), Cambridge: Cambridge University Press.

    Google Scholar 

  • Uriagereka, J. (1998). Rhyme and Reason: An Introduction to Minimalist Syntax, Cambridge, MA: MIT Press.

    Google Scholar 

  • Valiant, L. G. (1984). A theory of the learnable. Commun. ACM 27, 436–445.

    Article  Google Scholar 

  • Vapnik, V. (1995). The Nature of Statistical Learning Theory, New York: Springer.

    Google Scholar 

  • Wexler, K. and P. Culicover (1980). Formal Principles of Language Acquisition, Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchener, W.G., Nowak, M.A. Competitive exclusion and coexistence of universal grammars. Bull. Math. Biol. 65, 67–93 (2003). https://doi.org/10.1006/bulm.2002.0322

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0322

Keywords

Navigation