Skip to main content

Advertisement

Log in

A model for the emergence of adaptive subsystems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate the interaction of learning and evolution in a changing environment. A stable learning capability is regarded as an emergent adaptive system evolved by natural selection of genetic variants. We consider the evolution of an asexual population. Each genotype can have ‘fixed’ and ‘flexible’ alleles. The former express themselves as synaptic connections that remain unchanged during ontogeny and the latter as synapses that can be adjusted through a learning algorithm. Evolution is modelled using genetic algorithms and the changing environment is represented by two optimal synaptic patterns that alternate a fixed number of times during the ‘life’ of the individuals. The amplitude of the change is related to the Hamming distance between the two optimal patterns and the rate of change to the frequency with which both exchange roles. This model is an extension of that of Hinton and Nowlan in which the fitness is given by a probabilistic measure of the Hamming distance to the optimum. We find that two types of evolutionary pathways are possible depending upon how difficult (costly) it is to cope with the changes of the environment. In one case the population loses the learning ability, and the individuals inherit fixed synapses that are optimal in only one of the environmental states. In the other case a flexible subsystem emerges that allows the individuals to adapt to the changes of the environment. The model helps us to understand how an adaptive subsystem can emerge as the result of the tradeoff between the exploitation of a congenital structure and the exploration of the adaptive capabilities practised by learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackley, D. and M. Littmann (1992). Interactions between learning and evolution, in Artificial Life II, G. C. Langton, C. Taylor, J. Farmer and S. Rasmussen (Eds), Redwood City, CA, USA: Addison-Wesley.

    Google Scholar 

  • Ansel, L. W. (1999). A quantitative model of the Simpson-Baldwin effect. J. Theor. Biol. 196, 197–209.

    Article  Google Scholar 

  • Baldwin, J. M (1896). A new factor in evolution. Am. Nat. 30, 441–451.

    Article  Google Scholar 

  • Dopazo, H., M. Gordon, R. P. J. Perazzo and S. Risau-Gusman (2001). A model for the interaction of learning and evolution. Bull. Math. Biol. 63, 117–134.

    Article  Google Scholar 

  • Edelman, G. M. (1987). Neural Darwinism. The Theory of Neuronal Group Selection, Oxford: Oxford University Press.

    Google Scholar 

  • Fontanari, J. F. and R. Meir (1990). The effect of learning on the evolution of asexual populations. Complex Syst. 4, 401–414.

    Google Scholar 

  • Frank, S. A. (1996). The design of natural and artificial adaptive systems, in Adaptation, M. R Rose and G. V Lauder (Eds), New York: Academic.

    Google Scholar 

  • French, R. and A. Messinger (1994). Genes, phenes and the Baldwin effect: learning and evolution in a simulated population, in Artificial Life IV, R. Brooks and P. Maes (Eds), Cambridge, MA: MIT Press.

    Google Scholar 

  • Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Redwood City, CA, USA: Addison-Wesley.

    Google Scholar 

  • Hertz, J., A. Krogh and R. G. Palmer (1991). Introduction to the Theory of Neural Computation, Redwood City, CA, USA: Addison-Wesley.

    Google Scholar 

  • Hinton, G. E. and S. J. Nowlan (1987). How learning can guide evolution. Complex Syst. 1, 495–502.

    Google Scholar 

  • Maynard Smith, J. (1987). When learning guides evolution. Nature 349, 761–762.

    Article  Google Scholar 

  • Minsky, M. and S. Papert (1969). Perceptrons, Cambridge, MA: MIT Press.

    Google Scholar 

  • Mitchell, M (1996). An Introduction to Genetic Algorithms, Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dopazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dopazo, H., Gordon, M.B., Perazzo, R. et al. A model for the emergence of adaptive subsystems. Bull. Math. Biol. 65, 27–56 (2003). https://doi.org/10.1006/bulm.2002.0315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0315

Keywords

Navigation