Skip to main content
Log in

Vertically transmitted symbionts in structured host metapopulations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a structured metapopulation model for vertically transmitted symbionts in natural host populations. We focus primarily on two questions

• Are mutualism and high transmission probability prerequisites for the survival of symbionts in structured host metapopulations?

• What are the ecological conditions under which coexistence of infected and uninfected hosts is possible?

We start with studying in depth the case of qualitatively identical patches and derive conditions for invasion and coexistence of uninfected and infected hosts. Our model predicts that, in a qualitatively uniform environment, coexistence is possible only if the symbionts increase the fitness of their host, so the mutualism is indeed needed for coexistence. We also prove that evolution selects for 100% infection frequency in the metapopulation.

Then we generalize the model for different patch qualities and get conditions for invasion in a virgin environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breen, J. P. (1994). Acremonium endophyte interactions with enhanced plant resistance to insects. Ann. Rev. Entomol. 39, 401–423.

    Article  Google Scholar 

  • Clay, K. (1990). Fungal endophytes of grasses. Ann. Rev. Ecol. Syst. 21, 275–279.

    Article  Google Scholar 

  • Clay, K. and J. Holah (1999). Fungal endophytes symbiosis and plant diversity in successional fields. Science 285, 1742–1744.

    Article  Google Scholar 

  • Diekmann, O., M. Gyllenberg and J. A. J. Metz. Steady states analysis of structured population models (submitted).

  • Diekmann, O., M. Gyllenberg, J. A. J. Metz and H. R. Thieme (1993). The cumulative formulation of (physiologically) structured population models, in Evolution Equations, Control Theory and Biomathematics, G. Lumer Ph. Clement (Ed.), New York: Marcel Dekker, pp. 145–154.

    Google Scholar 

  • Diekmann, O., M. Gyllenberg, J. A. J. Metz and H. R. Thieme (1998). On the formulation and analysis of general deterministic structured population models. I. Linear theory. J. Math. Biol. 36, 349–388.

    Article  MathSciNet  Google Scholar 

  • Diekmann, O., M. Gyllenberg, J. A. J. Metz and H. R. Thieme (2001). On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol. 43, 157–189.

    Article  MathSciNet  Google Scholar 

  • Ewald, P. W. (1987). Transmission modes and evolution of the parasitism-mutualism continuum. Ann. NY Acad. Sci. 503, 295–306.

    Google Scholar 

  • Fine, P. E. M. (1975). Vectors and vertical transmission: an epidemiologic perspective. Ann. NY Acad. Sci. 266, 173–194.

    Google Scholar 

  • Gyllenberg, M. and I. Hanski (1997). Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogeneous landscape. Theor. Popul. Biol. 52, 198–215.

    Article  Google Scholar 

  • Gyllenberg, M., I. Hanski and A. Hastings (1997). Structured metapopulation models, in Metapopulation Dynamics: Ecology, Genetics and Evolution, M. Gilpin and I. Hanski (Eds), London: Academic Press, pp. 93–122.

    Google Scholar 

  • Gyllenberg, M., I. Hanski and J. A. J. Metz (2002). Viability and persistence of metapopulations, in Evolutionary Conservation Biology (to appear), D. Couvet, R. Ferriére and U. Dieckmann (Eds), Cambridge University Press.

  • Gyllenberg, M. and J. A. J. Metz (2001). On fitness in structured metapopulations. J. Math. Biol. 43, 545–560.

    Article  MathSciNet  Google Scholar 

  • Hanski, I. (1999). Metapopulation Ecology, Oxford Series in Ecology and Evolution.

  • Hanski, I. and M. E. Gilpin (1997). Metapopulation Biology: Ecology, Genetics and Evolution, Academic Press.

  • Herre, E. A. (1993). Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 1442–1445.

    Google Scholar 

  • Hoveland, C. S. (1993). Importance of economic significance of the acremonium endophytes: a continuum of interactions with host plants. Agriculture, Ecosystems and Environment 44, 3–12.

    Article  Google Scholar 

  • Lipsitch, M., A. Nowak, D. Ebert and R. May (1995). The population dynamics of vertically and horizontally transmitted parasites. Proc. R. Soc. Lond. B: Biol. Sci. 260, 321–327.

    Google Scholar 

  • Lipsitch, M., S. Sillerand and A. Nowak (1996). The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50, 1729–1741.

    Article  Google Scholar 

  • Metz, J. A. J. and M. Gyllenberg (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionary stable dispersal strategies. Proc. R. Soc. Lond. B 268, 499–508.

    Article  Google Scholar 

  • Saikkonen, K. (2000). Kentucky-31, far from home. Science 287, 1887a.

  • Saikkonen, K., S. H. Faeth, M. Helander and T. J. Sullivan (1998). Fungal endophytes: a continuum of interactions with host plants. Ann. Rev. Ecol. Syst. 29, 319–343.

    Article  Google Scholar 

  • Saikkonen, K., D. Ion and M. Gyllenberg (2002). The persistence of vertically transmitted fungi in grass metapopulations. Proc. R. Soc. Lond. B: Biol. Sci. 269, 1397–1403.

    Article  Google Scholar 

  • Wilkinson, D. M. and T. N. Sherratt (2001). Horizontally acquired mutualisms, an unsolved problem in ecology? Oikos 92, 377–384.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Preoteasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyllenberg, M., Preoteasa, D. & Saikkonen, K. Vertically transmitted symbionts in structured host metapopulations. Bull. Math. Biol. 64, 959–978 (2002). https://doi.org/10.1006/bulm.2002.0309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0309

Keywords

Navigation