Skip to main content
Log in

Kinetic proofreading in receptor-mediated transduction of cellular signals: Receptor aggregation, partially activated receptors, and cytosolic messengers

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Signaling by the T cell receptor (TCR), and the related immunoreceptor FcεRI, is sensitive to ligand-receptor binding kinetics. Differences in the rate at which a ligand dissociates from a receptor cause disproportionate differences in signaling events and cellular responses to ligand-receptor engagement. Analysis of a simple mathematical model, developed by McKeithan (1995, Proc. Natl. Acad. Sci. USA, 92, 5042–5046), has indicated that such sensitivity to binding kinetics is expected if a bound receptor must complete a cascade of modifications before generating a productive signal. However, recent experiments show that some cellular responses mediated by immunoreceptors escape from the control of kinetic proofreading, in the sense that these responses do not exhibit the expected sensitivity to the lifetime of a ligand-receptor bond. Here, we use an extended form of the McKeithan model to investigate possible explanations for such exceptions to the kinetic proofreading rule. We examine cellular responses triggered by cytosolic messengers, which are activated by modified receptors, and responses triggered by receptors in intermediate states of modification, i.e., receptors that have not progressed through the full series of potential modifications. Receptor aggregation is also considered. We find that the expected relationship between ligand-receptor binding kinetics and cellular responses can change significantly when signal transduction depends on a messenger or a partially modified receptor. In particular, cellular responses triggered by a messenger, such as a transcription factor that translocates from the membrane to the nucleus after receptor-mediated activation, can be sensitive or insensitive to a change in the lifetime of a ligand-receptor bond, depending on the parameters that govern the activation and decay of a messenger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brivanlou, A. H. and J. E. Darnell, Jr (2002). Signal transduction and the control of gene expression. Science 295, 813–818.

    Article  Google Scholar 

  • Chan, C., A. J. T. George and J. Stark (2001). Cooperative enhancement of specificity in a lattice of T cell receptors. Proc. Natl. Acad. Sci. USA 98, 5758–5763.

    Article  Google Scholar 

  • Cochran, J. R., T. O. Cameron and L. J. Stern (2000). The relationship of MHC-peptide binding and T cell activation probed using chemically defined class II oligomers. Immunity 12, 241–250.

    Article  Google Scholar 

  • Cochran, J. R., D. Aivazian, T. O. Cameron and L. J. Stern (2001). Receptor clustering and transmembrane signaling in T cells. Trends Biochem. Sci. 26, 304–310.

    Article  Google Scholar 

  • Ehrenberg, M. and C. Blomberg (1980). Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. Biophys. J. 31, 333–358.

    Google Scholar 

  • Erickson, J., B. Goldstein, D. Holowka and B. Baird (1987). The effect of receptor density on the forward rate constant for binding of ligands to cell surface receptors. Biophys. J. 52, 657–662.

    Google Scholar 

  • Germain, R. N. (2001). The T cell receptor for antigen: signaling and ligand discrimination. J. Biol. Chem. 276, 35223–35226.

    Google Scholar 

  • Germain, R. N. and I. Štefanová (1999). The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu. Rev. Immunol. 17, 467–522.

    Article  Google Scholar 

  • Goldstein, B. and C. Wofsy (1994). Aggregation of cell surface receptors, in Cell Biology, B. Goldstein and C. Wofsy (Eds), Providence, RI: American Mathematical Society, pp. 109–135.

    Google Scholar 

  • Hlavacek, W. S. and M. A. Savageau (1998). Method for determining natural design principles of biological control circuits. J. Intell. Fuzzy Syst. 6, 147–160.

    Google Scholar 

  • Hlavacek, W. S., A. S. Perelson, B. Sulzer, J. Bold, J. Paar, W. Gorman and R. G. Posner (1999). Quantifying aggregation of IgE-FcεRI by multivalent antigen. Biophys. J. 76, 2421–2431.

    Google Scholar 

  • Hlavacek, W. S., A. Redondo, H. Metzger, C. Wofsy and B. Goldstein (2001). Kinetic proofreading models for cell signaling predict ways to escape kinetic proofreading. Proc. Natl. Acad. Sci. USA 98, 7295–7300.

    Article  Google Scholar 

  • Hopfield, J. J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139.

    Article  Google Scholar 

  • Kalergis, A. M., N. Boucheron, M.-A. Doucey, E. Palmieri, E. C. Goyarts, Z. Vegh, I. F. Luescher and S. G. Nathenson (2001). Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat. Immun. 2, 229–234.

    Article  Google Scholar 

  • Keegan, A. D. and W. E. Paul (1992). Multichain immune recognition receptors: similarities in structure and signaling pathways. Immunol. Today 13, 63–68.

    Article  Google Scholar 

  • Kersh, E. N., A. S. Shaw and P. M. Allen (1998). Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575.

    Article  Google Scholar 

  • Kim, S., S. M. Patrick, N. S. Braunstein, J. L. Thomas and E. F. Leonard (2001). Modeling of early events in T cell signal transduction after controlled T cell activation by peptide major histocompatibility complex. Ann. Biomed. Eng. 29, 373–383.

    Article  Google Scholar 

  • Lanzavecchia, A., G. Iezzi and A. Viola (1999). From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1–4.

    Article  Google Scholar 

  • Leonard, W. J. and J. J. O’Shea (1998). JAKs and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322.

    Article  Google Scholar 

  • Liu, Z.-J., H. Haleem-Smith, H. Chen and H. Metzger (2001). Unexpected signals in a system subject to kinetic proofreading. Proc. Natl. Acad. Sci. USA 98, 7289–7294.

    Article  Google Scholar 

  • Lord, G. M., R. I. Lechler and A. J. T. George (1999). A kinetic differentiation model for the action of altered TCR ligands. Immunol. Today 20, 33–39.

    Article  Google Scholar 

  • McKeithan, T. W. (1995). Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. USA 92, 5042–5046.

    Article  Google Scholar 

  • Metzger, H. (1992). Transmembrane signaling: the joy of aggregation. J. Immunol. 149, 1477–1487.

    Google Scholar 

  • Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595.

    Google Scholar 

  • Perelson, A. S. and C. DeLisi (1980). Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups. Math. Biosci. 48, 71–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson, A. S. (1984). Some mathematical models of receptor clustering by multivalent ligands, in Cell Surface Dynamics: Concepts and Models, A. S. Perelson, C. DeLisi and F. W. Wiegel (Eds), New York: Marcel Dekker, pp. 223–276.

    Google Scholar 

  • Rabinowitz, J. D., C. Beeson, D. S. Lyons, M. M. Davis and H. M. McConnell (1996). Kinetic discrimination in T-cell activation. Proc. Natl. Acad. Sci. USA 93, 1401–1405.

    Article  Google Scholar 

  • Rosette, C., G. Werlen, M. A. Daniels, P. O. Holman, S. M. Alam, P. J. Travers, N. R. J. Gascoigne, E. Palmer and S. C. Jameson (2001). The impact of duration versus extent of TCR occupancy on T cell activation: a revision of the kinetic proofreading model. Immunity 15, 59–70.

    Article  Google Scholar 

  • Savageau, M. A. (1985). A theory of alternative designs for biochemical control systems. Biomed. Biochim. Acta 44, 875–880.

    Google Scholar 

  • Segel, L. A. (1988). On the validity of the steady-state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A. and M. Slemrod (1989). The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Segal, D. M., J. D. Taurog and H. Metzger (1977). Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc. Natl. Acad. Sci. USA 74, 2993–2997.

    Article  Google Scholar 

  • Sloan-Lancaster, J. and P. M. Allen (1996). Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu. Rev. Immunol. 14, 1–27.

    Article  Google Scholar 

  • Sontag, E. D. (2001). Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Automat. Control 46, 1028–1047.

    Article  MATH  MathSciNet  Google Scholar 

  • Subramanian, K. (1995). Binding and functional effects of defined ligands with monovalent, bivalent, and bispecific IgE in solution and on the cell surface, PhD thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Subramanian, K., D. Holowka, B. Baird and B. Goldstein (1996). The Fc segment of IgE influences the kinetics of dissociation of a symmetrical bivalent ligand from cyclic dimeric complexes. Biochemistry 35, 5518–5527.

    Article  Google Scholar 

  • Torigoe, C., J. K. Inman and H. Metzger (1998). An unusual mechanism for ligand antagonism. Science 281, 568–572.

    Article  Google Scholar 

  • Turner, H. and J.-P. Kinet (1999). Signalling through the high-affinity IgE receptor FcεRI. Nature 402, B24–B30.

    Article  Google Scholar 

  • Voit, E. O. (2000). Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists, Ch. 7, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Wofsy, C., D. Coombs and B. Goldstein (2001). Calculations show substantial serial engagement of T cell receptors. Biophys. J. 80, 606–612.

    Article  Google Scholar 

  • Xu, K., B. Goldstein, D. Holowka and B. Baird (1998). Kinetics of multivalent antigen DNP-BSA binding to IgE-FcεRI in relationship to the stimulated tyrosine phosphorylation of FcεRI. J. Immunol. 160, 3225–3235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Hlavacek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hlavacek, W.S., Redondo, A., Wofsy, C. et al. Kinetic proofreading in receptor-mediated transduction of cellular signals: Receptor aggregation, partially activated receptors, and cytosolic messengers. Bull. Math. Biol. 64, 887–911 (2002). https://doi.org/10.1006/bulm.2002.0306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0306

Keywords

Navigation