Skip to main content
Log in

Quantitative effects of medium hardness and nutrient availability on the swarming motility of Serratia liquefaciens

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We report the first controlled measurements of expansion rates for swarming colonies of Serratia liquefaciens under different growth conditions, combined with qualitative observations of the organization of the colony into regions of differentiated cell types. Significantly, the results reveal that swarming colonies of S. liquefaciens can have an increasing expansion rate with time. We compare and contrast the expansion rate results with predictions from a recent mathematical model which coupled key hydrodynamical and biological mechanisms. Furthermore, we investigate whether the swarming colonies grow according to a power law or exponentially (for large times), as suggested by recent theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammendola, A., O. Geisenberger, J. B. Andersen, M. Givskov, K. H. Schleifer and L. Eberl (1998). Serratia liquefaciens swarm cells exhibit enhanced resistance to predation by tetrahymena sp. FEMS Microbiol. Lett. 164, 69.

    Google Scholar 

  • Aronson, D. G. (1986). The porous media equation, in Nonlinear Diffusion Problems, A Fasano and M. Primicerio (Eds), Berlin: Springer.

    Google Scholar 

  • Bees, M. (2002). Expansion rates for colonies of swarming bacteria in thin films. Unpublished.

  • Bees, M., P. Andresén, E. Mosekilde and M. Givskov (2000). The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens. J. Math. Biol. 40, 27.

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Jacob, E. (1997). From snowflake formation to growth of bacterial colonies. II. Cooperative formation of complex bacterial patterns. Contemp. Phys. 38, 205.

    Article  Google Scholar 

  • Ben-Jacob, E., I. Cohen, O. Shochet, I. Aranson, H. Levine and L. Tsimring (1995). Complex bacterial patterns. Nature 373, 566.

    Article  Google Scholar 

  • Ben-Jacob, E., O. Shochet, A. Tenebaum, I. Cohen, A. Czirók and T. Vicsek (1994). Generic modeling of cooperative growth patterns in bacterial colonies. Nature 368, 46.

    Article  Google Scholar 

  • Brenner, M. and A. Bertozzi (1993). Spreading of droplets on a solid surface. Phys. Rev. Lett. 71, 593.

    Article  Google Scholar 

  • Budrene, E. O. and H. C. Berg (1995). Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49.

    Article  Google Scholar 

  • Clark, J. D. and O. Maaløe (1967). DNA replication and the cell cycle in Escherichia coli. J. Mol. Biol. 23, 99.

    Google Scholar 

  • Czirok, A., M. Matsushita and T. Vicsek (2001). Theory of periodic swarming of bacteria: application to Proteus mirabilis. Phys. Rev. E 6303, 1915.

    Google Scholar 

  • de Gennes, P. G. (1985). Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827.

    Article  Google Scholar 

  • Eberl, L., G. Christiansen, S. Molin and M. Givskov (1996a). Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. J. Bacteriol. 178, 554.

    Google Scholar 

  • Eberl, L., S. Molin and M. Givskov (1999). Surface motility in Serratia liquefaciens. Review article. J. Bacteriol. 181, 1703.

    Google Scholar 

  • Eberl, L., M. K. Winson, C. Sternberg, G. S. A. B. Stewart, G. Christiansen, S. R. Chabra, B. Bycroft, P. Williams, S. Molin and M. Givskov (1996b). Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behavior of Serratia liquefaciens. Mol. Microbiol. 20, 127.

    Google Scholar 

  • Esipov, S. E. and J. A. Shapiro (1998). Kinetic model of Proteus mirabilis swarm colony development. J. Math. Biol. 36, 249.

    Article  MathSciNet  MATH  Google Scholar 

  • Fujikawa, H. and M. Matsushita (1989). Fractal growth of Bacillus subtilis on agar plates. J. Phys. Soc. Japan 58, 3857.

    Article  Google Scholar 

  • Givskov, M., L. Eberl, G. Christiansen, M. J. Benedick and S. Molin (1995). Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon FlhD. Mol. Microbiol. 15, 445.

    Google Scholar 

  • Givskov, M., L. Eberl and S. Molin (1997). Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol. Lett. 148, 115.

    Google Scholar 

  • Givskov, M., L. Olsen and S. Molin (1988). Cloning and expression in Escherichia coli of the gene for an extracellular phospholipase from Serratia liquefaciens. J. Bacteriol. 170, 5855.

    Google Scholar 

  • Givskov, M., J. Östling, L. Eberl, P. W. Lindum, A. B. Christensen, G. Christiansen, S. Molin and S. Kjelleberg (1998). Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180, 742.

    Google Scholar 

  • Golding, I., Y. Kozlovsky, I. Cohen and E. Ben-Jacob (1998). Studies of bacterial branching growth using reaction-diffusion models for colonial development. Physica A 260, 510.

    Article  Google Scholar 

  • Gygi, D., M. M. Rahman, H.-C. Lai, R. Carlson, J. Guard-Petter and C. Hughes (1995). A cell surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol. Microbiol. 17, 1167.

    Article  Google Scholar 

  • Henrichsen, J. (1972). Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36, 478.

    Google Scholar 

  • King, J. R. (2001). Thin-film flows and high-order degenerate parabolic equations, IUTAM Symposium on Free Surface Flows, A. C. King and Y. D. Shikhmurzaev (Eds), Dordrecht: Kluwer.

    Google Scholar 

  • Kitsunezaki, S. (1997). Interface dynamics for bacterial colony formation. J. Phys. Soc. Japan 66, 1544.

    Article  MATH  Google Scholar 

  • Kozlovsky, Y., I. Cohen, I. Golding and E. Ben-Jacob (1999). Lubricating bacteria model for branching growth of bacterial colonies. Phys. Rev. E 59, 7025.

    Article  Google Scholar 

  • Lacasta, A. M., I. R. Cantalapiedra, C. E. Auguet, A. Penaranda and L. Ramirez-Piscina (1999). Modeling of spatiotemporal patterns in bacterial colonies. Phys. Rev. E 59, 7036.

    Article  Google Scholar 

  • Li, B., J. Wang, W. Liu and Z. Wu (1995). Computer simulations of bacterial colony formation. Europhys. Lett. 30, 239.

    Google Scholar 

  • Lindum, P. W., U. Anthoni, C. Christoffersen, L. Eberl, S. Molin and M. Givskov (1998). N-acyl-L-homoserine lactone autoinducers control production of an extracellular surface active lipopeptide required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180, 6384.

    Google Scholar 

  • Matsushita, M., J. Wakita, H. Itoh, I. Rafols, T. Matsuyama, H. Sakaguchi and M. Mimura (1998). Interface growth and pattern formation in bacterial colonies. Physica A 249, 517.

    Article  Google Scholar 

  • Matsuyama, T. and M. Matsushita (1996). Morphogenesis by bacterial cells, in Fractal Geometry in Biological Systems, P. M. Iannaccone and M. Khokha (Eds), Boca Raton, FL: CRC Press.

    Google Scholar 

  • Matsuyama, T., M. Sogawa and Y. Nakagawa (1989). Fractal spreading growth of S. marcescens which produces surface active exolipids. FEMS Microbiol. Lett. 61, 243.

    Google Scholar 

  • McCarter, L., M. Hilmen and M. Silvermen (1988). Flagellar dynamometer controls swarmer cell-differentiation of V. parahaemolyticus. Cell 54, 345.

    Article  Google Scholar 

  • Rasmussen, T. B., M. Manefield, J. B. Andersen, L. Eberl, U. Anthoni, C. Christophersen, P. Steinberg, S. Kjelleberg and M. Givskov (2000). How Delisea pulchra furanones affect quorum-sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146, 3237.

    Google Scholar 

  • Rasmussen, T. B., T. T. Nielsen, L. Eberl, M. A. Bees, S. Molin and M. Givskov (2002). Surface conditioning in a swarming colony: cells have different assignments. Microbiology submitted.

  • Rauprich, O., M. Matsushita, C. J. Weijer, F. Siegert, S. E. Esipov and J. A. Shapiro (1996). Periodic phenomena in P. mirabilis swarm colony development. J. Bacteriol. 178, 6525.

    Google Scholar 

  • Shapiro, J. A. (1995). The significance of bacterial colony patterns. Bioessays 17, 597.

    Article  Google Scholar 

  • Shikhmurzaev, Y. D. (1997). Spreading of drops on solid surfaces in a quasi-static regime. Phys. Fluids 9, 266.

    Article  Google Scholar 

  • Tolker-Nielsen, T., A. B. Christensen, L. Eberl, T. B. Rasmussen, C. Sternberg, S. Molin and M. Givskov (2000). Assessment of flhDC mRNA levels in individual Serratia liquefaciens swarm cells. J. Bacteriol. 182, 2680.

    Article  Google Scholar 

  • Woodward, D. E., R. Tyson, M. R. Myerscough, J. D. Murray, E. O. Budrene and H. C. Berg (1995). Spatial temporal patterns generated by Salmonella typhimurium. Biophysical J. 68, 2181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bees, M.A., Andresén, P., Mosekilde, E. et al. Quantitative effects of medium hardness and nutrient availability on the swarming motility of Serratia liquefaciens . Bull. Math. Biol. 64, 565–587 (2002). https://doi.org/10.1006/bulm.2002.0287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0287

Keywords

Navigation