Skip to main content
Log in

Stochasticity of the step size in the force generating process due to a single myosin molecule

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We formulate a motional model on the basis of an experimental optical trapping system which reveals the single molecular events of the force generation due to actin and myosin, and we discuss the origin of the dispersion of the displacements of the beads bound to the actin filament. In some experimental data sets, this dispersion is larger than that presumed from the model under the condition that the thermal agitation is the only source of the fluctuation. Thus, other fluctuating elements besides that due to thermal agitation are supposed to cause the dispersion. A possible fluctuating element is the step size itself. We discuss this possibility and estimate the fluctuation in step size using two reported experimental data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentil, D. E. (1998). Distribution of attachment events relative to actin binding sites as evidenced in a bidirectional actomyosin interaction model. Bull. Math. Biol. 19, 973–995.

    Article  Google Scholar 

  • Finer, J. T., R. M. Simmons and J. A. Spudich (1994). Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119.

    Article  Google Scholar 

  • Guilford, W. H., D. E. Dupuis, G. Kennedy, J. Wu, J. B. Patlak and D. M. Warshaw (1997). Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys. J. 72, 1006–1021.

    Google Scholar 

  • Goldman, Y. E. (1998). Wag the tail: structural dynamics of actomyosin. Cell 93, 1–4.

    Article  MATH  Google Scholar 

  • Highsmith, S. (1999). Lever arm model of force generation by actin-myosin-ATP. Biochemistry 38, 9791–9797.

    Article  Google Scholar 

  • Holmes, K. C. (1997). The swinging lever-arm hypothesis of muscle contraction. Curr. Biol. 7, R112–R118.

    Article  Google Scholar 

  • Ishijima, A., H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka and T. Yanagida (1998). Simultaneous observation of individual atpase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171.

    Article  Google Scholar 

  • Kojima, H., A. Ishijima and T. Yanagida (1994). Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc. Natl Acad. Sci. USA 91, 12962–12966.

    Google Scholar 

  • Kitamura, K., M. Tokunaga, A. H. Iwane and T. Yanagida (1999). A single myosin head moves along an actin filament with regular steps of 5.3 nm. Nature 397, 129–134.

    Article  Google Scholar 

  • Molloy, J. E., J. E. Burns, J. Kendrick-Jones, R. T. Tregear and D. C. S. White (1995). Movement and force produced by a single myosin head. Nature 378, 209–212.

    Article  Google Scholar 

  • Mehta, A. D., J. T. Finer and J. A. Spudich (1997). Detection of single-molecule interactions using correlated thermal diffusion. Proc. Natl Acad. Sci. USA 94, 7927–7931.

    Article  Google Scholar 

  • Mehta, A. D., R. S. Rock, M. Rief, J. A. Spudich, M. S. Mooseker and R. E. Cheney (1999). Myosin-V is a processive actin-based motor. Nature 400, 590–593.

    Article  Google Scholar 

  • Mehta, A. D. and J. A. Spudich (1998). Single myosin molecule mechanics. Adv. Struct. Biol. 5, 229–270.

    Google Scholar 

  • Rayment, I., W. R. Rypniewski, K. Schmidt-Base, R. Smith, D. R. Tomchick, M. M. Benning, D. A. Winkelmann, G. Wesenberg and H. M. Holden (1993). Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58.

    Google Scholar 

  • Risken, H. (1989). The Fokker-Planck Equation, Berlin: Springer.

    MATH  Google Scholar 

  • Smith, D. A. (1998). Direct tests of muscle cross-bridge theories: predictions of a brownian dumbbell model for position-dependent cross-bridge lifetimes and step sizes with an optically trapped actin filament. Biophys. J. 75, 2996–3007.

    Google Scholar 

  • Tanaka, H., A. Ishijima, M. Honda, K. Saito and T. Yanagida (1998). Orientation dependence of displacements by a single one-headed myosin relative to the actin filament. Biophys. J. 75, 1886–1894.

    Google Scholar 

  • Veigel, C., M. L. Bartoo, D. C. S. White, J. C. Sparrow and J. E. Molloy (1998). The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438.

    Article  Google Scholar 

  • Veigel, C., L. M. Coluccio, J. D. Jontes, J. C. Sparrow, R. A. Milligan and J. E. Molloy (1999). The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533.

    Article  Google Scholar 

  • Vale, R. D. and R. A. Milligan (2000). The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Kagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagawa, Y., Tsuchiya, Y. Stochasticity of the step size in the force generating process due to a single myosin molecule. Bull. Math. Biol. 64, 407–419 (2002). https://doi.org/10.1006/bulm.2002.0285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0285

Keywords

Navigation