Skip to main content
Log in

A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we employ the novel application of a reaction-diffusion model on a growing domain to examine growth patterns of the ligaments of arcoid bivalves (marine molluscs) using realistic growth functions. Solving the equations via a novel use of the finite element method on a moving mesh, we show how a reaction-diffusion model can mimic a number of different ligament growth patterns with modest changes in the parameters. Our results imply the existence of a common mode of ligament pattern formation throughout the Arcoida. Consequently, arcoids that share a particular pattern cannot be assumed, on this basis alone, to share an immediate common ancestry. Strikingly different patterns within the set can easily be generated by the same developmental program. We further show how the model can be used to make quantitatively testable predictions with biological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baines, M. J. (1994). Moving Finite Elements, Monographs on Numerical Analysis, Oxford: Clarendon Press.

    Google Scholar 

  • Baines, M. J. and A. J. Wathen (1988). Moving finite element methods for evolutionary problems. I. Theory. J. Comp. Phys. 79, 245–269.

    MathSciNet  Google Scholar 

  • Crampin, E. J. (2000). Reaction-diffusion patterns on growing domains. D Phil thesis, University of Oxford.

  • Crampin, E. J., E. A. Gaffney and P. K. Maini (2001). Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model. J. Math. Biol., in press.

  • Edelstein-Keshet, L. (1988). Mathematical Models in Biology, New York: Random House.

    Google Scholar 

  • Ermentrout, B., J. Campbell and G. Oster (1986). A model for shell patterns based on neural activity. Veliger 28, 369–388.

    Google Scholar 

  • Geirer, A. and H. Meinhardt (1972). A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  Google Scholar 

  • Jimack, P. K. and A. J. Wathen (1991). Temporal derivatives in the finite-element method on continuously deforming grids. SIAM J. Numer. Anal. 28, 990–1003.

    Article  MathSciNet  Google Scholar 

  • Kiskaddon, L. (1996). Computer simulations of arcoid ligaments. Unpublished report on independent study, Franklin and Marshall College, Lancaster, Pa., 20p. + computer file.

  • Kondo, S. and R. Asai (1995). A reaction-diffusion wave on the skin of the marine angelfish. Pomacanthus, Nature 376, 765–768.

    Article  Google Scholar 

  • MacNeil, F. S. (1937). The systematic position of the pelecypod genus. Trinacria. J. Washington Acad. Sci. 27, 452–458.

    Google Scholar 

  • Madzvamuse, A. (2000). A numerical approach to the study of spatial pattern formation. D Phil thesis, University of Oxford.

  • Meinhardt, H. and M. Klinger (1987). A model for pattern formation on the shells of molluscs. J. Theor. Biol. 126, 63–69.

    Google Scholar 

  • Meinhardt, H. (1995). The Algorithmic Beauty of Sea Shells, Heidelberg, New York: Springer.

    Google Scholar 

  • Morton, K. W. and D. F. Mayers (1994). Numerical Solution of Partial Differential Equations, Cambridge University Press.

  • Müller, J. D., P. L. Roe and H. Deconinck (1993). A frontal approach for internal node generation for Delaunay triangulations. Int. J. Numer. Methods Fluids 17, 241–256.

    Article  Google Scholar 

  • Murray, J. D. (1993). Mathematical Biology, Heidelberg, New York: Springer.

    Google Scholar 

  • Newell, N. D. (1937). Late Paleozoic pelecypods: Pectinacea. Kansas Geological Survey, Publications 10, 1–123.

    Google Scholar 

  • Newell, N. D. (1969). Family Noetiidae Stewart, 1930, in Treatise on Invertebrate Paleontology, R. C. Moore, (Ed.) (Part N, Mollusca 6), Geological Society of America and University of Kansas, pp. 261–264.

  • Oster, G. F., N. Shubin, J. D. Murray and P. Alberch (1988). Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution 42, 862–884.

    Article  Google Scholar 

  • Painter, K. J. (1997). Chemotaxis as a mechanism for Morphogenesis. D Phil thesis, University of Oxford.

  • Reddy, J. N. (1984). An Introduction to the Finite Element Method, McGraw-Hill.

  • Saad, Y. (1996). Iterative Methods for Sparse Linear Systems, PWS Publishing Company.

  • Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400.

    Article  MathSciNet  Google Scholar 

  • Thomas, D. (1975). Artificial enzyme membrane, transport, memory, and oscillatory phenomena, in Analysis and Control of Immobilised Enzyme Systems, D. Thomas and J. P. Kervenez (Eds), Berlin, Heidelberg, New York: Springer, pp. 115–150.

    Google Scholar 

  • Thomas, R. D. K. (1976). Constraints of ligament growth, form and function on evolution in the Arcoida (Mollusca: Bivalvia). Paleobiology 2, 64–83.

    Google Scholar 

  • Thomas, R. D. K., A. Madzvamuse, P. K. Maini and A. J. Wathen (2000). Growth Patterns of Noetiid Ligaments: Implications of Developmental Models for the Origin of an Evolutionary Novelty Among Arcoid Bivalves, The Evolutionary Biology of the Bivalvia, E. M. Harper, J. D. Taylor and J. A. Crame, (Eds) (Special Publications 177), Geological Society, London, pp. 289–279.

    Google Scholar 

  • Thompson, D. W. (1917). On Growth and Form, 1st edn, Cambridge: Cambridge University Press.

    Google Scholar 

  • Trueman, E. R. (1969). Ligament, in Treatise on Invertebrate Paleontology, R. C. Moore, (Ed.) Geological Society of America and University of Kansas (Part N, Mollusca 6), pp. 58–64.

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237, 37–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madzvamuse, A., Thomas, R.D.K., Maini, P.K. et al. A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves. Bull. Math. Biol. 64, 501–530 (2002). https://doi.org/10.1006/bulm.2002.0283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0283

Keywords

Navigation