Skip to main content
Log in

Kinetic heterogeneity of an experimental tumour revealed by BrdUrd incorporation and mathematical modelling

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the present paper we propose a method of analysis of the cell kinetic characteristics of in vivo experimental tumours, that uses DNA-BrdUrd flow cytometry data at various times after the bromodeoxyuridine (BrdUrd) injection and mathematical modelling. The model of the cell population takes into account the cell-cell heterogeneity of the progression rate across cell cycle phases within the tumour, and assumes a strict correlation between the durations of S and G2M phases. The model also allows for a nonconstant DNA synthesis rate across S phase. In addition, the measurement process is modelled, considering the possibility of nonimpulsive labelling and providing a representation of the time course of the bivariate DNA-BrdUrd fluorescence distribution. Sequential DNA-BrdUrd distributions were obtained in vivo from a human ovarian carcinoma transplanted in mice and, for comparison, in vitro from a cell line of the same origin. From these data, that included the fractional density and the mean BrdUrd-fluorescence of BrdUrd-positive cells as a function of the DNA-fluorescence, kinetic parameters such as the potential doubling time (T pot) and the mean and variance of the transit times in S and G2M phases, were estimated. This study revealed the presence of a substantial heterogeneity in S and G2M phases within the in vivo cell population and of a lower heterogeneity in the in vitro population. Moreover, our analysis suggests a nonnegligible effect of the BrdUrd pharmacokinetics in the in vivo cell labelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagwell, C. B. (1993). Theoretical aspects of flow cytometry data analysis, in Clinical Flow Cytometry, K. D. Bauer, R. E. Duque and T. V. Shankey (Eds), Baltimore: Williams and Wilkins, pp. 41–61.

    Google Scholar 

  • Baisch, H. and U. Otto (1993). Intratumoral heterogeneity of S phase transition in solid tumours determined by bromodeoxyuridine labelling and flow cytometry. Cell Prolif. 26, 439–448.

    Google Scholar 

  • Baisch, H., U. Otto, U. Hatje and H. Fack (1995). Heterogeneous cell kinetics in tumors analyzed with a simulation model for bromodeoxyuridine single and multiple labeling. Cytometry 21, 52–61.

    Article  Google Scholar 

  • Begg, A. C., N. J. McNally, D. C. Shrieve and H. Kärcher (1985). A method to measure the duration of DNA synthesis and the potential doubling time from a single sample. Cytometry 6, 620–626.

    Article  Google Scholar 

  • Bergers, E., P. J. van Diest and J. P. Baak (1996). Tumour heterogeneity of DNA cell cycle variables in breast cancer measured by flow cytometry. J. Clin. Pathol. 49, 931–937.

    Google Scholar 

  • Bertuzzi, A., N. Del Grosso, A. Gandolfi, C. Sinisgalli and G. Starace (1995a). Cell cycle analysis by the relative movement approach: effect of variability across S-phase of DNA synthesis rate. Cell Prolif. 28, 107–120.

    Google Scholar 

  • Bertuzzi, A., A. Gandolfi, C. Sinisgalli and G. Starace (1995b). Relationship between DNA synthesis rate and DNA-BrdUrd distribution in pulse labelling experiments, in Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 2, O. Arino, D. Axelrod and M. Kimmel (Eds), Winnipeg: Wuerz, pp. 71–86.

    Google Scholar 

  • Bertuzzi, A. and A. Gandolfi (1999). A model for estimating cell kinetic parameters of experimental tumours studied by BrdUrd labelling and flow cytometry. Arch. Control Sci. 9, 41–56.

    MathSciNet  Google Scholar 

  • Bertuzzi, A., A. Gandolfi, C. Sinisgalli and G. Starace (1997). Estimation of cell cycle kinetic parameters by flow cytometry, in Advances in Mathematical Population Dynamics—Molecules, Cells and Man, O. Arino, D. Axelrod and M. Kimmel (Eds), Singapore: World Scientific, pp. 167–180.

    Google Scholar 

  • Cappella, P., D. Tomasoni, M. Faretta, M. Lupi, F. Montalenti, F. Banzato, M. D’Incalci and P. Ubezio (2001). Cell cycle effects of gemcitabine. Int. J. Cancer 93, 401–408.

    Article  Google Scholar 

  • Carlton, J. C., N. H. A. Terry and R. A. White (1991). Measuring potential doubling times of murine tumors using flow cytometry. Cytometry 12, 645–650.

    Article  Google Scholar 

  • Chiorino, G., J. A. J. Metz, D. Tomasoni and P. Ubezio (2001). Desynchronization rate in cell populations: mathematical modeling and experimental data. J. Theor. Biol. 208, 185–199.

    Article  Google Scholar 

  • Dolbeare, F. (1995). Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part I: historical perspectives, histochemical methods and cell kinetics. Histochem. J. 27, 339–369.

    Google Scholar 

  • Dolbeare, F., H. Gratzner, M. G. Pallavicini and J. W. Gray (1983). Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc. Natl. Acad. Sci. USA 80, 5573–5577.

    Article  Google Scholar 

  • Gratzner, H. G. (1982). Monoclonal antibody to 5-bromo-and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218, 474–475.

    Google Scholar 

  • Kallinowski, F., K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff and P. Vaupel (1989). Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res. 49, 3759–3764.

    Google Scholar 

  • Kriss, J. P. and L. Revesz (1961). Quantitative studies of incorporation of exogenous thymidine and 5-bromodeoxyuridine into deoxyribonucleic acid of mammalian cells in vitro. Cancer Res. 21, 1141–1147.

    Google Scholar 

  • Massazza, G., A. Tomasoni, A. Lucchini, P. Allavena, E. Erba, N. Colombo, A. Mantovani, M. D’Incalci, C. Mangioni and R. Giavazzi (1989). Intraperitoneal and subcutaneous xenograft of human ovarian carcinoma in nude mice and their potential in experimental therapy. Int. J. Cancer 44, 494–500.

    Google Scholar 

  • Powell, B. L., B. W. Gregory, T. E. Kute, T. M. Morgan, E. S. Lyerly and R. L. Capizzi (1990). Bromodeoxyuridine incorporation into DNA of human leukemia cells is not concentration dependent. Cytometry 11, 438–441.

    Article  Google Scholar 

  • Sisken, J. E. and L. Morasca (1965). Intrapopulation kinetics of the mitotic cycle. J. Cell Biol. 25, 179–189.

    Article  Google Scholar 

  • Steel, G. G. (1977). Growth Kinetics of Tumours: Cell Population Kinetics in Relation to the Growth and Treatment of Cancer, Oxford: Clarendon Press.

    Google Scholar 

  • Terry, M. H. A., C. G. Milross, N. Patel, K. A. Mason, R. A. White and L. Milas (1997). The effect of paclitaxel on the cell cycle kinetics of a murine mammary adenocarcinoma in vivo. Breast J. 3, 99–105.

    Google Scholar 

  • Ubezio, P. (1990). Cell cycle simulation for flow cytometry. Comp. Meth. Programs Biomed. 31, 255–266.

    Article  Google Scholar 

  • Ubezio, P., S. Filippeschi and L. Spinelli (1991). Method for kinetic analysis of drug-induced cell cycle perturbations. Cytometry 12, 119–126.

    Article  Google Scholar 

  • White, R. A. (1989). Computing multiple cell kinetic properties from a single time point. J. Theor. Biol. 141, 429–446.

    Google Scholar 

  • White, R. A. (1991). A theory for analysis of cell populations with non-cycling S phase cells. J. Theor. Biol. 150, 201–214.

    Google Scholar 

  • White, R. A. and M. L. Meistrich (1986). A comment on ‘A method to measure the duration of DNA synthesis and the potential doubling time from a single sample’. Cytometry 7, 486–490.

    Article  Google Scholar 

  • White, R. A., M. L. Meistrich, A. Pollack and N. H. Terry (2000). Simultaneous estimation of T G2+M, T S, and T pot using single sample dynamic tumor data from bivariate DNA-thymidine analogue cytometry. Cytometry 41, 1–8.

    Article  Google Scholar 

  • White, R. A., N. H. A. Terry and M. L. Meistrich (1990). New methods for calculating kinetic properties of cells in vitro using pulse labelling with bromodeoxyuridine. Cell Tissue Kinet. 23, 561–573.

    Google Scholar 

  • Yanagisawa, M., F. Dolbeare, T. Todoroki and J. W. Gray (1985). Cell cycle analysis using numerical simulation of bivariate DNA/Bromodeoxyuridine distributions. Cytometry 6, 550–562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertuzzi, A., Faretta, M., Gandolfi, A. et al. Kinetic heterogeneity of an experimental tumour revealed by BrdUrd incorporation and mathematical modelling. Bull. Math. Biol. 64, 355–384 (2002). https://doi.org/10.1006/bulm.2001.0280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0280

Keywords

Navigation