Skip to main content
Log in

A dual-mode dynamic model of the human accommodation system

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The function of the accommodation system is to provide a clear retinal image of objects in the visual scene. The system was previously thought to be under simple continuous (i.e., single mode of operation) feedback control, but recent research has shown that it is under discontinuous (i.e., two stimulus-dependent modes of operation) feedback control by means of fast and slow processes. A model using MATLAB/SIMULINK was developed to simulate this dual-mode behavior. It consists of fast and slow components in a feedback loop. The fast component responds to step target disparity with an open-loop movement to nearly reach the desired level, and then the slow component uses closed-loop feedback to reduce the residual error to an acceptable small level. For slow ramps, the slow component provides smooth tracking of the stimulus, whereas for fast ramps, the fast component provides accurate staircase-like step responses. Simulation of this model using a variety of stimuli, including pulse, step, ramp, and sinusoid, showed good agreement with experimental results. Thus, this represents the first dynamic model of accommodation that can accurately simulate the complex dual-mode behavior seen experimentally. The biological significance of this model is that it can be used to quantitatively analyze clinical deficits such as amblyopia and accommodative insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benjamin, W. J. (1998). Borish’s Clinical Refraction, Philadelphia, PA: W. B. Saunders.

    Google Scholar 

  • Brodkey, J. D. and L. Stark (1967). Accommodative convergence—an adaptive nonlinear system. IEEE Trans. Syst. Sci. Cybern. 3, 121–133.

    Google Scholar 

  • Campbell, F. W., J. G. Robson and G. Westheimer (1959). Fluctuations of accommodation under steady viewing conditions. J. Physiol. 145, 579–594.

    Google Scholar 

  • Campbell, F. W. and G. Westheimer (1960). Dynamics of accommodation responses of the human eye. J. Physiol. 151, 285–295.

    Google Scholar 

  • Charman, W. N. and G. Heron (1988). Fluctuations in accommodation: a review. Ophthalmic. Physiol. Opt. 8, 153–164.

    Google Scholar 

  • Ciuffreda, K. J. (1991). Accommodation and its anomalies, in Vision and Visual Dysfunction: Visual Optics and Instrumentation, Vol. 1, W. N. Charman (Ed.), London: Macmillan, pp. 231–279.

    Google Scholar 

  • Eadie, A. S. and P. J. Carline (1995). Evolution of control system models of ocular accommodation, vergence and their interaction. Med. Biol. Eng. Comput. 33, 517–524.

    Google Scholar 

  • Fujii, K., K. Kondo and T. Kasai (1970). An analysis of the human eye accommodation system, Osaka University Technical Report No. 925, Vol. 20, pp. 221–236.

    Google Scholar 

  • Gilmartin, B. and R. E. Hogan (1985). The relationship between tonic accommodation and ciliary muscle innervation. Invest. Ophthalmol. Vis. Sci. 26, 1024–1028.

    Google Scholar 

  • Griffin, J. R. (1976). Binocular Anomalies—Procedures for Vision Therapy, Chicago, IL: Professional Press.

    Google Scholar 

  • Hung, G. K. (1997). Quantitative analysis of the accommodative convergence to accommodation ratio: linear and nonlinear models. IEEE Trans. Biomed. Eng. 44, 306–316.

    Article  Google Scholar 

  • Hung, G. K. (1998a). Dynamic model of the vergence eye movement system: simulation using MATLAB/SIMULINK. Comput. Methods Programs Biomed. 55, 59–68.

    Article  Google Scholar 

  • Hung, G. K. (1998b). Sensitivity analysis of the stimulus/response function of a static nonlinear accommodation model. IEEE Trans. Biomed. Eng. 45, 335–341.

    Article  Google Scholar 

  • Hung, G. K. and K. J. Ciuffreda (1988). Dual-mode behaviour in the human accommodation system. Ophthalmic. Physiol. Opt. 8, 327–332.

    Article  Google Scholar 

  • Hung, G. K. and K. J. Ciuffreda (1994). Sensitivity analysis of relative accommodation and vergence. IEEE Trans. Biomed. Eng. 41, 241–248.

    Article  Google Scholar 

  • Hung, G. K., K. J. Ciuffreda, J. L. Semmlow and S. C. Hokoda (1983). Model of static accommodative behavior in human amblyopia. IEEE Trans. Biomed. Eng. 30, 665–672.

    Google Scholar 

  • Hung, G. K., J. L. Semmlow and K. J. Ciuffreda (1982). Accommodative oscillation can enhance average accommodation response: a simulation study. IEEE Trans. Syst. Man Cybern. 12, 594–598.

    Google Scholar 

  • Hung, G. K., J. L. Semmlow and K. J. Ciuffreda (1986). A dual-mode dynamic model of the vergence eye movement system. IEEE Trans. Biomed. Eng. 33, 1021–1028.

    Google Scholar 

  • Jiang, B-C. (2000). A modified control model for steady-state accommodation, in Accommodation and Vergence Mechanisms in the Visual System, O. Franzén, H. Richter and L. Stark (Eds), Basel: Birkhäuser Verlag, pp. 235–243.

    Google Scholar 

  • Kasai, T., M. Unno, K. Fujii, M. Sekiguchi and K. Shinohara (1971). Dynamic characteristics of human eye accommodation system, Osaka University Technical Report, Vol. 21, pp. 569.

    Google Scholar 

  • Khosroyani, M. (2000). Computer simulation of ocular accommodation and vergence models, MS thesis, Tarbiat Modarres University, Tehran.

    Google Scholar 

  • Krishnan, V. V. and L. Stark (1975). Integral control in accommodation. Comput. Programs Biomed. 4, 237–255.

    Article  Google Scholar 

  • Morgan, M. W. (1968). Accommodation and vergence. Am. J. Optom. Arch. Am. Acad. Optom. 45, 417–454.

    Google Scholar 

  • O’Neill, W. D. (1969). An interactive control system’s analysis of the human lens accommodative controller. Automatica 5, 645–654.

    Article  Google Scholar 

  • Poggio, G. F. and B. Fischer (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J. Neurophysiol. 40, 1392–1405.

    Google Scholar 

  • Semmlow, J. L., G. K. Hung and K. J. Ciuffreda (1986). Quantitative assessment of disparity vergence components. Invest. Ophthalmol. Vis. Sci. 27, 558–564.

    Google Scholar 

  • Stark, L. (1968). Neurological Control Systems, Studies in Bioengineering, New York: Plenum Press, pp. 369–403.

    Google Scholar 

  • Stark, L., Y. Takahashi and G. Zames (1965). Nonlinear servo-analysis of human lens accommodation. IEEE Trans. Sys. Sci. Cyber. 1, 75–83.

    Article  Google Scholar 

  • Sun, F. and L. Stark (1990). Switching control of accommodation: experimental and simulation responses to ramp inputs. IEEE Trans. Biomed. Eng. 37, 73–79.

    Article  Google Scholar 

  • Toates, F. M. (1972). Accommodation function of the human eye. Psychol. Rev. 52, 828–863.

    Google Scholar 

  • Tucker, J. and W. N. Charman (1979). Reaction and response times for accommodation. Am. J. Optom. Physiol. Opt. 56, 490–503.

    Google Scholar 

  • Winn, B., J. R. Pugh, B. Gilmartin and H. Owens (1990). Arterial pulse modulates steady-state ocular accommodation. Curr. Eye Res. 9, 971–974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosroyani, M., Hung, G.K. A dual-mode dynamic model of the human accommodation system. Bull. Math. Biol. 64, 285–299 (2002). https://doi.org/10.1006/bulm.2001.0274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0274

Keywords

Navigation