Skip to main content

Advertisement

Log in

A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: Quorum sensing and the build-up to invasion

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa remains a significant pathogen in burn-wound infection, its pathogenicity being associated with the production of a cocktail of virulence determinants which is regulated by a population-density-dependent mechanism termed quorum sensing. Quorum sensing is effected through the production and binding of signalling molecules. Here we present a mathematical model for the early stages of the infection process by P. aeruginosa in burn wounds which accounts for the quorum sensing system and for the diffusion of signalling molecules in the burn-wound environment. The results of the model and the effects of important parameters are discussed in detail. For example, the effect of the degradation rate of signalling molecules and its significance for anti-signalling therapies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anwar, H., G. H. Shand, K. H. Ward, M. R. W. Brown, K. E. Alpar and J. Gowar (1985). Antibody response to acute Pseudomonas aeruginosa infection in a burn wound. FEMS Microbiol. Lett. 29, 225–230.

    Google Scholar 

  • Bosworth, C. (Ed.) (1997). Burns Trauma: Management and Nursing Care, Ballière Tindall.

  • Diller, K. R. and L. J. Hayes (1983). A finite element model of burn injury in blood-perfused skin. J. Biomech. Eng. 105, 300–307.

    Article  Google Scholar 

  • Dockery, J. D. and J. P. Keener (2001). A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 63, 95–116.

    Article  Google Scholar 

  • Felts, A. G., G. Giridhar, D. W. Grainger and J. B. Slunt (1999). Efficacy of locally delivered polyclonal immunoglobulin against Pseudomonas aeruginosa infection in a murine burn wound model. Burns 25, 415–423.

    Article  Google Scholar 

  • Fuqua, W. C., S. C. Winans and E. P. Greenberg (1996). Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Ann. Rev. Microbiol. 50, 727–751.

    Article  Google Scholar 

  • Gang, R. K., R. L. Bang, S. C. Sanyal, E. Mokaddas and A. R. Lari (1999). Pseudomonas aeruginosa septicaemia in burns. Burns 25, 611–616.

    Article  Google Scholar 

  • Holder, I. A. (1985). The pathogenesis of infections owing to Pseudomonas aeruginosa using the burned mouse model: experimental studies from the Shiners Burns Institute, Cincinnati. Can. J. Mircobiol. 31, 393–402.

    Article  Google Scholar 

  • Jarrett, A. (Ed.) (1973). The Physiology and Pathophysiology of the Skin, Vol 2: The Nerves and Blood Vessels, Academic Press.

  • Levin, V. A., C. S. Patlak and H. D. Landahl (1980). Heuristic modelling of drug delivery to malignant brain tumors. J. Pharm. Biopharm. 8, 257–296.

    Article  Google Scholar 

  • McManus, W. F., C. W. Goodwin, A. D. Mason and B. A. Pruitt (1981). Burn wound infection. J. Trauma 21, 753–756.

    Article  Google Scholar 

  • Neely, A. N. and I. A. Holder (1999). Antimicrobial resistance. Burns 25, 17–24.

    Article  Google Scholar 

  • Neu, H. C. (1983). The role of Pseudomonas aeruginosa in infections. J. Antimicrob. Chemother. 11, 1–13.

    MathSciNet  Google Scholar 

  • Revathi, G., J. Puri and B. K. Jain (1998). Bacteriology of burns. Burns 24, 347–349.

    Article  Google Scholar 

  • Rumbaugh, K. P., J. A. Griswold, B. H. Iglewski and A. N. Hamood (1999). Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67, 5854–5862.

    Google Scholar 

  • Salmond, G. P. C., B. W. Bycroft, G. S. A. B. Stewart and P. Williams (1995). The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol. Microbiol. 16, 615–624.

    Google Scholar 

  • Stieritz, D. D., A. Bondi, D. McDermott and E. B. Michaels (1982). A burned mouse model to evaluate anti-pseudomonas activity of topical agents. J. Antimicrob. Chemother. 9, 133–140.

    Google Scholar 

  • Swift, S., J. P. Throup, P. Williams, G. P. C. Salmond and G. S. A. B. Stewart (1996). Quorum sensing: a population-density component in the determination of bacterial phenotype. Trends Biochem. Sci. 21, 214–219.

    Article  Google Scholar 

  • Thaler, F., J. E. Rohan and P. Loirat (1998). Brûlés: infection à Pseudomonas aeruginosa. Méd. Mal. Infect. 28, 167–174.

    Google Scholar 

  • Ward, J. P., J. R. King, A. J. Koerber, P. Williams, J. M. Croft and R. E. Sockett (2001a). Mathematical modelling of quorum sensing in bacteria. IMA J. Math. Appl. Med. Biol. 18, 263–292.

    MATH  Google Scholar 

  • Ward, J. P., J. R. King, A. J. Koerber, J. M. Croft, R. E. Sockett and P. Williams (2001b). Early development and quorum sensing in bacterial biofilms, in preparation.

  • Winson, M. K. et al. (1995). Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92, 9427–9431.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koerber, A.J., King, J.R., Ward, J.P. et al. A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: Quorum sensing and the build-up to invasion. Bull. Math. Biol. 64, 239–259 (2002). https://doi.org/10.1006/bulm.2001.0272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0272

Keywords

Navigation