Skip to main content
Log in

Generalized analysis of experimental data for interrelated biological measurements

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Important biological mechanisms, such as signal transduction and gene expression, are mediated by numerous interacting multifunctional molecules, whose expression and activation are tightly regulated in space and time in response to stimuli. In order to describe the network of functional inter-relationships that govern such mechanisms, we use simple algorithms to interpret multiple variable measurements, identify the prominent participants, evaluate their interactions and obtain a ‘functional fingerprint’ of cell behaviour. Dynamic measurements of responses yield hierarchical information about causal relations in the underlying pathway. As a proof of principles we apply this approach to phosphorylation assays in protein gels, probing hormone and insulin signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akutsu, T., S. Miyano and S. Kuhara (1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput. 4, 17–28.

    Google Scholar 

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson (1994). Molecular Biology of the Cell, 3rd edn, New York: Garland, pp. 778.

    Google Scholar 

  • Alon, U., N. Barkai, D. A. Notterman, D. Mack, K. Gish, S. Leibler and A. J. Levine (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Am. Sci. 8, 6745–6750.

    Article  Google Scholar 

  • Alon, U., M. G. Surette, N. Barkai and S. Leibler (1999). Robustness in bacterial chemotaxis. Nature 397, 168–171.

    Article  Google Scholar 

  • Arkin, A., P. Shen and J. Ross (1997). A test case of correlation metric construction of a reaction pathway from measurements. Science 277, 1275–1279.

    Article  Google Scholar 

  • Beale, R. and T. Jackson (1990). Neural Computing: An Introduction, New York: Adam Hilger.

    MATH  Google Scholar 

  • Biener, Y., R. Feinstein, M. Mayak, Y. Kaburagi, T. Kadowaki and Y. Zick (1996). Annexin II is a novel player in insulin signal transduction. Possible association between annexin II phosphorylation and insulin receptor internalization. J. Biol. Chem. 271, 29489–29496.

    Google Scholar 

  • Bode, H. W. (1955). Network Analysis and Feedback Amplifier Design, New York: D. van Nostrand.

    Google Scholar 

  • Bray, D. (1990). Intracellular signalling as a parallel distributed process. J. Theor. Biol. 143, 215–231.

    Google Scholar 

  • Bray, D. (1995). Protein molecules as computational elements in living cells. Nature 376, 307–312.

    Article  Google Scholar 

  • Bray, D., R. B. Bourret and M. I. Simon (1993). Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4, 469–482.

    Google Scholar 

  • Bray, D. and S. Lay (1994). Computer simulated evolution of a network of cell signaling molecules. Biophys. J. 66, 972–977.

    Article  Google Scholar 

  • Brent, R. (2000). Genomic biology. Cell 100, 169–183.

    Article  Google Scholar 

  • Burstein, Z. (1995). Protein molecules as computational elements in living cells. J. Theor. Biol. 174, 1–11.

    Article  Google Scholar 

  • Celis, J. E. et al. (1996). Human 2-D PAGE databases for proteome analysis in health and disease http:biobase.dk/cgi-bin/celis. FEBS Lett. 398, 129–134.

    Article  Google Scholar 

  • Chock, P. B. and E. R. Stadtman (1977). Superiority of interconvertible enzyme cascades in metabolite regulation: analysis of multicyclic systems. Proc. Natl. Acad. Sci. USA 74, 2766–2770.

    Article  Google Scholar 

  • DeRisi, J. L., V. R. Iyer and P. O. Brown (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.

    Article  Google Scholar 

  • Demuth, H. and M. Beale (1993). MATLAB Neural Network TOOLBOX, The MATH WORKS Inc., Natick, MA.

    Google Scholar 

  • Eisen, M. B., P. T. Spellman, P. O. Brown and D. Botstein (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863–14868.

    Google Scholar 

  • Fearon, E. R. and B. Vogelstein (1990). A genetic model for colorectal tumorigenesis. Cell 61, 759–767.

    Article  Google Scholar 

  • Hartwell, L. H., J. J. Hopfield, S. Leibler and A. W. Murray (1999). From molecular to modular cell biology. Nature 402(Suppl. 6761), c47–c52.

    Article  Google Scholar 

  • Iyer, V. R. et al. (1999). The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87.

    Article  Google Scholar 

  • Krauth, W. and M. Mézard (1987). J. Phys. A. (Math. Gen.) 20, L745–L752.

    Article  Google Scholar 

  • Kuo, F. F. (1966). Network Analysis and Synthesis, 2nd edn, New York: John Wiley Sons.

    MATH  Google Scholar 

  • Liang, S., S. Fuhrman and R. Somogyi (1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomput. 3, 18–29.

    Google Scholar 

  • Marille, E., D. Thieffry, O. Leo and M. Kaufman (1996). Toxicity and neuroendocrine regulation of the immune response: a model analysis. J. Theor. Biol. 183, 285–305.

    Article  Google Scholar 

  • Marnellos, G. and E. Mjolsess (1998). A gene network approach to modeling early neurogenesis in Drosophila. Pac. Symp. Biocomput. 3, 30–41.

    Google Scholar 

  • McAdams, H. H. and A. Arkin (1999). It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Gen. 15, 65–69.

    Article  Google Scholar 

  • Michaels, G. S., D. B. Carr, M. Askenazi, S. Fuhrman, X. Wen S. and R. Somogyi (1998). Cluster analysis and data visualization of large-scale gene expression data. Pac. Symp. Biocomput. 3, 42–53.

    Google Scholar 

  • Østergaard, M., H. H. Rasmussen, H. V. Nielsen, H. Vorum, T. F. Ørntoft, H. Wolf and J. E. Celis (1997). Proteome profiling of bladder squamous cell carcinomas: identification of markers that define their degree of differentiation. Cancer Res. 57, 4111–4117.

    Google Scholar 

  • Plouraboué, F., H. Atlan, G. Weisbuch and J.-P. Nadal (1992). A network model of the coupling of ion channels with secondary messenger in cell signaling. Network 3, 393–406.

    Article  Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Plannery (1992). Numerical Receipts, 2nd edn, Cambridge University Press, pp. 51–62.

  • Prigent, S. A. and W. J. Gullick (1994). Identification of c-erbB-3 binding sites for phosphatidylinositol 3′-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J. 13, 2831–2841.

    Google Scholar 

  • Remy, I. and S. W. Michnick (2001). Visualization of biochemical networks in living cells. Proc. Natl. Acad. Sci. USA 98, 7678–7683.

    Article  Google Scholar 

  • Romano, A., W. T. Wong, M. Santoro, P. J. Wirth, S. S. Thorgeirsson and P. P. Di Fiore (1994). The high transforming potency of erbB-2 and ret is associated with phosphorylation of paxillin and a 23 kDa protein. Oncogene 9, 2923–2933.

    Google Scholar 

  • Skilling, H. H. (1974). Electric Networks, New York: John Wiley and Sons.

    Google Scholar 

  • Somogyi, R. and C. A. Sniegoski (1996). Modeling the complexity of genetic networks: understanding multigenetic and pleiotropic regulation. Complexity 1, 45–63.

    MathSciNet  Google Scholar 

  • Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein and B. Futcher (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297.

    Google Scholar 

  • Thieffry, D., A. M. Huerta, E. Pérez-Rueda and J. Collado-Vides (1998). From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20, 433–440.

    Article  Google Scholar 

  • Weaver, D. C., C. T. Workman and G. D. Stormo (1999). Modeling regulatory networks with weight matrices. Pac. Symp. Biocomput. 4, 112–123.

    Google Scholar 

  • Wen, X., S. Fuhrman, G. S. Michaels, D. B. Car, S. Smith, J. L. Barker and R. Sologyi (1998). Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. 95, 334–339.

    Article  Google Scholar 

  • Whitehead, J. P., S. F. Clark, B. Urso and D. E. James (2000). Signaling through the insulin receptor. Curr. Opin. Cell Biol. 12, 222–228.

    Article  Google Scholar 

  • Widrow, B. and S. D. Stern (1985). Adaptive Signal Processing, New York: Prentice-Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kam, Z. Generalized analysis of experimental data for interrelated biological measurements. Bull. Math. Biol. 64, 133–145 (2002). https://doi.org/10.1006/bulm.2001.0269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0269

Keywords

Navigation