Skip to main content
Log in

An algebraic-combinatorial model for the identification and mapping of biochemical pathways

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop the mathematical machinery for the construction of an algebraic-combinatorial model using Petri nets to construct an oriented matroid representation of biochemical pathways. For demonstration purposes, we use a model metabolic pathway example from the literature to derive a general biochemical reaction network model. The biomolecular networks define a connectivity matrix that identifies a linear representation of a Petri net. The sub-circuits that span a reaction network are subject to flux conservation laws. The conservation laws correspond to algebraic-combinatorial dual invariants, that are called S-(state) and T-(transition) invariants. Each invariant has an associated minimum support. We show that every minimum support of a Petri net invariant defines a unique signed sub-circuit representation. We prove that the family of signed sub-circuits has an implicit order that defines an oriented matroid. The oriented matroid is then used to identify the feasible sub-circuit pathways that span the biochemical network as the positive cycles in a hyper-digraph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberty, R. A. (1992). Conversion of chemical equations to biochemical equations. J. Chem. Ed. 69, 493.

    Google Scholar 

  • Alberty, R. A. (1994). Review of biochemical thermodynamics. Biochim. Biophys. Acta 1207, 1–11.

    Google Scholar 

  • Alberty, R. A. (1996). Calculation of biochemical net reactions and pathways by using matrix operations. Biophys. J. 71, 507–515.

    Article  Google Scholar 

  • Alberty, R. A. (1991a). Chemical equations are actually matrix equations. J. Chem. Ed. 68, 984.

    Article  Google Scholar 

  • Alberty, R. A. (1991b). Equilibrium compositions of solutions of biochemical species and heats of biochemical reactions. Proc. Natl Acad. Sci. USA 88, 3268–3271.

    Article  Google Scholar 

  • Arkin, A., J. Ross and H. H. McAdams (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648.

    Google Scholar 

  • Bailey, C. G. and J. S. Oliveira (1998). An axiomatization for cubic algebras, in Mathematical Essays in Honor of Gian-Carlo Rota, B. E. Sagan and R. P. Stanley (Eds), Birkhaüser.

  • Bailey, C. G. and J. S. Oliveira. Another Universal Axiomatization of Cubes (in preparation).

  • Bailey, C. G. and J. S. Oliveira (2001). MV-Algebras and Cubic Algebras, submitted to the Annals of Combinatorics.

  • Berge, C. (1973). Graphs and Hypergraphs, New York: American Elsevier Publishing Company.

    MATH  Google Scholar 

  • Björner, A., M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler (1993). Oriented Matroids, CUP.

  • Clark, B. L. (1988). Stoichiometric network analysis. Cell Biophys. 12, 237–253.

    Google Scholar 

  • Diestel, R. (2000). Graphs Theory, 2nd edn, New York: Springer.

    Google Scholar 

  • Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness, Murray Hill, NJ/San Francisco, CA: Bell Labs./W. H. Freeman and Co.

    MATH  Google Scholar 

  • Henriksen, C. M., L. H. Christensen, J. Nielsen and J. Villadsen (1996). Growth energetics and metabolic fluxes in continuous cultures of Penicillium chrysogenum. J. Biotechnol. 45, 149–164.

    Article  Google Scholar 

  • Karp, P. D. et al. (1998). EcoCyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res. 26, 43–45.

    Article  Google Scholar 

  • Kauffman, S. A. (1971a). Gene regulation networks: a theory for their global structure and behavior. Curr. Top. Dev. Biol. 6, 145.

    Article  Google Scholar 

  • Kauffman, S. A. (1993). The Origins of Order: Self-organization and Selection in Evolution, New York, NY: Oxford University Press.

    Google Scholar 

  • Kohn, M. C. and W. J. Letzkus (1983). A graph-theoretical analysis of metabolic regulation. J. Theor. Biol. 100, 293–304.

    Article  Google Scholar 

  • Kohn, M. C. and D. R. Lemieux (1991). Identification of regulatory properties of metabolic networks by graph theory. J. Theor. Biol. 150, 3–25.

    Google Scholar 

  • Mavrovouniotis, M. L. and G. Stephanopoulos (1990). Computer-aided synthesis of biochemical pathways. Biotechnol. Bioeng. 36, 1119–1132.

    Article  Google Scholar 

  • McAdams, H. H. and A. Arkin (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA, Biochem. 94, 814–819.

    Article  Google Scholar 

  • Metropolis, N. and G-C. Rota (1978). Combinatorial structure of the faces of the n-cube. SIAM J. Appl. Math. 35, 689–694.

    Article  MathSciNet  MATH  Google Scholar 

  • Oster, G. S., A. S. Perelson and A. Katchalsky (1973). Network thermodynamics: dynamic modelling of biophysical systems. Q Rev of Biophys 6, 1–134.

    Article  Google Scholar 

  • Papoutsakis, E. and C. Meyer (1985). Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol. Bioeng. 27, 50–66.

    Article  Google Scholar 

  • Peusner, L. (1986). Studies in Network Thermodynamics, Vol. 5, Studies in Modern Thermodynamics, Amsterdam: Elsevier.

    Google Scholar 

  • Pons, A., C. Dussap, C. Pequignot and J. Gros (1996). Metabolic flux distribution in Corynebacterium melassecola ATCC 17965 for various carbon sources. Biotechnol. Bioeng. 51, 177–189.

    Article  Google Scholar 

  • Reddy, V. N., M. N. Liebman and M. L. Mavrovouniotis (1996). Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26, 9–24.

    Article  Google Scholar 

  • Reisig, W. (1985). Petri Nets, An Introduction, W. Brauer, G. Rozenberg and A. Salomaa (Eds), New York, NY: Springer-Verlag.

    Google Scholar 

  • Samoilov, M., A. Arkin and J. Ross (2001). On the deduction of chemical reaction pathways from measurements of time series of concentrations. Am. Inst. Phys. 11, 108–114.

    MATH  Google Scholar 

  • Schilling, C. H. and B. O. Palsson (1998). The underlying pathway structure of biochemical networks. Proc. Natl. Acad. Sci., USA 95, 4193–4198.

    Article  Google Scholar 

  • Schilling, C. H. and B. O. Palsson (1999). Towards metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog., Am. Chem. Soc. and Am. Inst. Chem. Engr. 15, 288–295.

    Google Scholar 

  • Schilling, C. H., S. Schuster, B. O. Palsson and R. Heinrichn (1999). Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog., Am. Chem. Soc. and Am. Inst. Chem. Engr. 15, 296–303.

    Google Scholar 

  • Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behavior. J. Theor. Biol. 81, 389–400.

    Article  MathSciNet  Google Scholar 

  • Seressiotis, A. and J. E. Bailey (1988). MPS: an artificially intelligent software system for the analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31, 587–602.

    Article  Google Scholar 

  • Smith, W. R. and R. W. Missen (1982). Chemical Reaction Equilibrium Analysis: Theory and Algorithms, New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, J.S., Bailey, C.G., Jones-Oliveira, J.B. et al. An algebraic-combinatorial model for the identification and mapping of biochemical pathways. Bull. Math. Biol. 63, 1163–1196 (2001). https://doi.org/10.1006/bulm.2001.0263

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0263

Keywords

Navigation