Skip to main content
Log in

Model of droplet dynamics in the Argentine ant Linepithema humile (Mayr)

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The formation of droplets of ants Linepithema humile (Mayr) is observed under certain experimental conditions: a fluctuating aggregate forms at the end of a rod and a droplet containing up to 40 ants eventually falls down. When the flux of incoming ants is sufficient, this process can continue for several hours, leading to the formation and fall of tens of droplets. Previous work indicates that the time series of drop-to-drop intervals may result from a nonlinear low-dimensional dynamics, and the interdrop increments exhibit long-range anticorrelations. A model of aggregation and droplet formation, based on experimental observations, is introduced and shown to reproduce these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, J. (1991). A mechanical treatment of the leaky faucet experiment. Phys. Lett. A 155, 148–154.

    Article  Google Scholar 

  • Bonabeau, E., G. Theraulaz, J. L. Deneubourg, S. Aron and S. Camazine (1997). Self-organization in social insects. TREE 12, 188–193.

    Google Scholar 

  • Bonabeau, E., G. Theraulaz, J. L. Deneubourg, N. Franks, O. Rafelsberger, J. L. Joly and S. Blanco (1998a). A model for the emergence of pillars, walls and royal chamber in termite nests. Phil. Trans. R. Soc. B 353, 1561–1576.

    Article  Google Scholar 

  • Bonabeau, E., G. Theraulaz, J.-L. Deneubourg, A. Lioni, F. Libert, C. Sauwens and L. Passera (1998b). Dripping faucet with ants. Phys. Rev. E 57, 5904–5907.

    Article  Google Scholar 

  • Buldyrev, S. V., A. L. Goldberger, S. Havlin, C.-K. Peng and H. E. Stanley (1994). Fractals in biology and medicine: from DNA to the heartbeat, in Fractals in Science, A. Bunde and S. Havlin (Eds), Berlin: Springer, pp. 49–87.

    Google Scholar 

  • Buschinger, A. and U. Maschwitz (1984). Defensive behavior and defensive mechanisms in ants, in Defensive Mechanisms in Social Insects, H. R. Hermann (Ed.), New York: Praeger Scientific, pp. 95–150.

    Google Scholar 

  • Camazine, S., J. L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau (2001). Self-Organization in Biological Systems, Princeton: Princeton University Press.

    Google Scholar 

  • Cole, B. J. (1991a). Is animal behaviour chaotic? Evidence from the activity of ants. Proc. R. Soc. B 244, 253–259.

    Google Scholar 

  • Cole, B. J. (1991b). Short term activity cycles in ants generation of periodicity by worker interaction. Am. Nat. 137, 244–259.

    Article  Google Scholar 

  • Darchen, R. (1959). Les techniques de construction chez Apis Mellifica. Ann. des Sc. Nat., Zool. 1, 111–209.

    Google Scholar 

  • Deneubourg, J.-L. (1977). Application de l’ordre par fluctuations á la description de certaines étapes de la construction du nid chez les termites. Ins. Soc. 24, 117–130.

    Article  Google Scholar 

  • Deneubourg, J.-L. and S. Goss (1989). Collective patterns and decision making. Ethol. Ecol. Evol. 1, 295–311.

    Google Scholar 

  • Franks, N. R. (1989). Army ants: a collective intelligence. Am. Sci. 77, 138–145.

    Google Scholar 

  • Franks, N. R., S. Bryant, R. Griffiths and L. Hemerik (1990). Synchronization of the behaviour within nest of the ant Leptothorax acervorum (Fabricus)-I. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612.

    Article  MATH  Google Scholar 

  • Goss, S. and J. L. Deneubourg (1988). Autocatalysis as a source of synchronised rhythmical activity in social insects. Ins. Soc. 35, 310–315.

    Article  Google Scholar 

  • Havlin, S., R. B. Selinger, M. Schwartz, H. E. Stanley and A. Bunde (1988). Random multiplicative processes and transport in structures with correlated spatial disorder. Phys. Rev. Lett. 61, 1438–1441.

    Article  Google Scholar 

  • Hölldobler, B. and E. O. Wilson (1977). Weaver ants. Sci. Am. 237, 146–154.

    Article  Google Scholar 

  • Hölldobler, B. and E. O. Wilson (1978). The multiple recruitment systems of the African weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol 3, 19–60.

    Article  Google Scholar 

  • Hölldobler, B. and E. O. Wilson (1990). The Ants, Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Martien, P., S. C. Pope, P. L. Scott and R. S. Shaw (1985). The chaotic behavior of the leaky faucet. Phys. Lett. A 110, 399–404.

    Article  Google Scholar 

  • Peng, C.-K., J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley and A. L. Goldberger (1993). Long-range anticorrelations and non-gaussian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343–1346.

    Article  Google Scholar 

  • Penna, T. J. P., P. M. C. de Oliveira, J. C. Sartorelli, W. M. Gonçalves and R. D. Pinto (1995). Long-range anticorrelations and non-gaussian behavior of a leaky faucet. Phys. Rev. E 52, 2168–2171.

    Article  Google Scholar 

  • Pradhan, N. and P. K. Sadavisan (1997). Validity of dimensional complexity measures of EEG signals. Int. J. Bifurcation Chaos 7, 173–186.

    Article  MATH  Google Scholar 

  • Sanchez-Ortiz, G. I. and A. L. Salas-Brito (1995). Strange attractors in a relaxation oscillator model for the dripping water faucet. Phys. Lett. A 203, 300–311.

    Article  MathSciNet  MATH  Google Scholar 

  • Sartorelli, J. C., W. M. Gonçalves and R. D. Pinto (1994). Crisis and intermittence in a leaky-faucet experiment. Phys. Rev. E 49, 3963–3975.

    Article  Google Scholar 

  • Shaw, R. S. (1984). The Dripping Faucet as a Model Chaotic System, Santa Cruz: Aerial Press.

    Google Scholar 

  • Schneirla, T. C. (1971). Army Ants: A Study in Social Organization, H. Topoff (Ed.), San Francisco: Freeman.

    Google Scholar 

  • Skaife, S. H. (1955). The Argentine Ant (Iridomyrmex humilis Mayr). Trans. R. Soc. South Afr. 34, 355–377.

    Google Scholar 

  • Solé, R. V., O. Miramontes and B. C. Goodwin (1993). Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357.

    Article  Google Scholar 

  • Takens, F. (1984). On the numerical determination of the dimension of an attractor. Lect. Notes in Math. 1125, 99–115.

    Article  MathSciNet  Google Scholar 

  • Theiler, J. (1990). Statistical precision of dimension estimators. Phys. Rev. A 41, 3038–3051.

    Article  Google Scholar 

  • Theiler, J., S. Eubank, A. Longtin, B. Galdrikian and J. D. Farmer (1992). Testing for nonlinearity in time series: The method of surrogate data. Physica D 58, 77–92.

    Article  Google Scholar 

  • Theraulaz, G., E. Bonabeau and J. L. Deneubourg (1998). The origin of nest complexity in social insects. Complexity 3, 15–25.

    Article  Google Scholar 

  • Theraulaz, G., E. Bonabeau and J. L. Deneubourg (1999). The mechanisms and rules of coordinated building in social insects, in Information Processing in Social Insects, C. Detrain, J. L. Deneubourg and J. Pasteels (Eds), Basel: Birkhauser Verlag, pp. 309–330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Theraulaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theraulaz, G., Bonabeau, E., Sauwens, C. et al. Model of droplet dynamics in the Argentine ant Linepithema humile (Mayr). Bull. Math. Biol. 63, 1079–1093 (2001). https://doi.org/10.1006/bulm.2001.0260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0260

Keywords

Navigation