Skip to main content

Advertisement

Log in

Bi-trophic food chain dynamics with multiple component populations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Food web models describe the patterns of material and energy flow in communities. In classical food web models the state of each population is described by a single variable which represents, for instance, the biomass or the number of individuals that make up the population. However, in a number of models proposed recently in the literature the individual organisms consist of two components. In addition to the structural component there is an internal pool of nutrients, lipids or reserves. Consequently the population model for each trophic level is described by two state variables instead of one. As a result the classical predator-prey interaction formalisms have to be revised. In our model time budgets with actions as searching and handling provide the formulation of the functional response for both components. In the model, assimilation of the ingested two prey components is done in parallel and the extracted energy is added to a predators reserve pool. The reserves are used for vital processes; growth, reproduction and maintenance. We will explore the top-down modelling approach where the perspective is from the community. We will demonstrate that this approach facilitates a check on the balance equations for mass and energy at this level of organization. Here it will be shown that, if the individual is allowed to shrink when the energy reserves are in short to pay the maintenance costs, the growth process has to be 100% effective. This is unrealistic and some alternative model formulations are discussed. The long-term dynamics of a microbial food chain in the chemostat are studied using bifurcation analysis. The dilution rate and the concentration of nutrients in the reservoir are the bifurcation parameters. The studied microbial bi-trophic food chain with two-component populations shows chaotic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng, K.-S. (1981). Uniqueness of a limit cycle for predator-prey system. SIAM J. Math. Anal. 12, 541–548.

    Article  MATH  MathSciNet  Google Scholar 

  • Cunningham, A. and R. M. Nisbet (1983). Transients and oscillations in continuous culture, in Mathematics in Microbiology, M. J. Bazin (Ed.), London: Academic Press, pp. 77–103.

    Google Scholar 

  • DeAngelis, D. L. and L. J. Gross (1992). Preface, in Individuals-based Models and Approaches in Ecology, D. L. DeAngelis and L. J. Gross (Eds), New York: Chapman & Hall, pp. xv–xviii.

    Google Scholar 

  • De Feo, O. and S. Rinaldi (1997). Yield and dynamics of tritrophic food chains. Am. Nat. 150, 328–345.

    Article  Google Scholar 

  • Doedel, E. J., A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang (1997). Auto 97: Continuation and bifurcation software for ordinary differential equations, Technical report, Concordia University, Montreal, Canada.

    Google Scholar 

  • Droop, M. R. (1973). Some thoughts in nutrient limitation in algae. J. Phycol. 9, 264–272.

    Article  Google Scholar 

  • Gragnani, A., O. De Feo and S. Rinaldi (1998). Food chains in the chemostat: relationships between mean yield and complex dynamics. Bull. Math. Biol. 60, 703–719.

    Article  MATH  Google Scholar 

  • Guckenheimer, J. and P. Holmes (1985). Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 2nd edn, Applied Mathematical Sciences 42, New York: Springer-Verlag.

    Google Scholar 

  • Hallam, T. G., R. R. Lassiter, J. Li and L. A. Suarez (1990). Modelling individuals employing an integrated energy response: Application to Daphnia. Ecology 71, 938–954.

    Article  Google Scholar 

  • Hanegraaf, P. P. F., B. W. Kooi and S. A. L. M. Kooijman (2000). The role of intracellular components in food chain dynamics. Compt. Rend. Acad. Sci. Ser., III—Sci. Vie-life 323, 99–111.

    Article  Google Scholar 

  • Herbert, D. (1958). Some principles of continuous culture, in Recent Progress in Microbiology, G. Tunevall (Ed.), Oxford, England: Blackwell, pp. 381–396.

    Google Scholar 

  • Hsu, S. B., S. P. Hubbell and P. Waltman (1978). Competing predators. SIAM J. Appl. Math. 35, 617–625.

    Article  MathSciNet  MATH  Google Scholar 

  • Khibnik, A. I., Y. A. Kuznetsov, V. V. Levitin and E. V. Nikolaev (1993). Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D 62, 360–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Kooi, B. W., M. P. Boer and S. A. L. M. Kooijman (1998a). Consequences of population models on the dynamics of food chains. Math. Biosci. 153, 99–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Kooi, B. W., M. P. Boer and S. A. L. M. Kooijman (1998b). On the use of the logistic equation in food chains. Bull. Math. Biol. 60, 231–246.

    Article  MATH  Google Scholar 

  • Kooi, B. W., M. P. Boer and S. A. L. M. Kooijman (1999). Resistance of a food chain to invasion by a top predator. Math. Biosci. 157, 217–236.

    Article  MathSciNet  Google Scholar 

  • Kooi, B. W. and S. A. L. M. Kooijman (1999). Discrete event versus continuous approach to reproduction in structured population dynamics. Theor. Popul. Biol. 56, 91–105.

    Article  MATH  Google Scholar 

  • Kooijman, S. A. L. M. (2000). Dynamic Energy and Mass Budgets in Biological Systems, Cambridge: Cambridge University Press.

    Google Scholar 

  • Kooijman, S. A. L. M., B. W. Kooi and T. G. Hallam (1999). The application of mass and energy conservation laws in physiologically structured population models of heterotrophic organisms. J. Theor. Biol. 197, 371–392.

    Article  Google Scholar 

  • Kot, M., G. S. Sayler and T. W. Schultz (1992). Complex dynamics in a model microbial system. Bull. Math. Biol. 54, 619–648.

    Article  MATH  Google Scholar 

  • Kuznetsov, Y. A. (1995). Elements of Applied Bifurcation Theory, Applied Mathematical Sciences 112, New York: Springer-Verlag.

    MATH  Google Scholar 

  • Monod, J. (1942). Recherches sur la Croissance des Cultures Bactériennes, Paris: Hermann.

    Google Scholar 

  • Nisbet, R. M., A. Cunningham and W. S. C. Gurney (1983). Endogenous metabolism and the stability of microbial prey-predator systems. Biotechnol. Bioeng. 25, 301–306.

    Article  Google Scholar 

  • Pavlou, S. and I. Kevrekidis (1992). Microbial predation in a periodically operated chemostat: A global study of the interaction between natural and externally imposed frequencies. Math. Biosci. 108, 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Persson, L., K. Leonardsson, A. M. de Roos, M. Gyllenberg and B. Christensen (1998). Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor. Popul. Biol. 54, 270–293.

    Article  MATH  Google Scholar 

  • Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. (B) 163, 224–231.

    Article  Google Scholar 

  • Polis, G. A. and K. O. Winemiller (Eds) (1996). Food Webs, New York: Chapman & Hall.

    Google Scholar 

  • Roels, J. A. (1983). Energy and Kinetics in Biotechnology, Amsterdam: Elsevier Biomedical Press.

    Google Scholar 

  • Rosenzweig, M. L. and R. H. MacArthur (1963). Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 97, 209–223.

    Article  Google Scholar 

  • Smith, H. L. and P. Waltman (1994). The Theory of the Chemostat, Cambridge: Cambridge University Press.

    Google Scholar 

  • Uchmański, J. and V. Grimm (1996). Individuals-based modelling in ecology: what makes the difference? Trends Ecol. Evol. 11, 437–441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. Kooi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kooi, B.W., Hanegraaf, P.P.F. Bi-trophic food chain dynamics with multiple component populations. Bull. Math. Biol. 63, 271–299 (2001). https://doi.org/10.1006/bulm.2000.0219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0219

Keywords

Navigation