Skip to main content
Log in

Seasonal temperature alone can synchronize life cycles

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we discuss the effects of yearly temperature variation on the development and seasonal occurrence of poikiliothermic organisms with multiple life stages. The study of voltinism in the mountain pine beetle (Dendroctonus ponderosae Hopkins), an important forest insect living in extreme temperature environments and exhibiting no diapause, provides a motivational example. Using a minimal model for the rates of aging it is shown that seasonal temperature variation and minimal stage-specific differences in rates of aging are sufficient to create stable uni-and multi-voltine oviposition cycles. In fact, these cycles are attracting and therefore provide an exogenous mechanism for synchronizing whole populations of organisms. Structural stability arguments are used to extend the results to more general life systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amman, G. D. and W. E. Cole (1983). Mountain pine beetle dynamics in lodgepole pine forests. Part II. Population dynamics. USDA Forest Service GTR-INT-145, Ogden, Utah.

  • Arnold, V. I. and A. Avez (1968). Ergodic Problems of Classical Mechanics, New York: Benjamin.

    Google Scholar 

  • Bentz, B. J., J. A. Logan and G. D. Amman (1991). Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Can. Entomol. 123, 1083–1094.

    Google Scholar 

  • Danks, H. V. (1987). Insect Dormancy: An Ecological Prospective, Monograph Series 1, Ottawa: Biological Survey of Canada (Terrestrial Arthropods).

    Google Scholar 

  • Guckenheimer, J. and P. Holmes (1983). Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd edn, Berlin: Springer-Verlag.

    Google Scholar 

  • Logan, J. A. (1988). Toward an expert system for development of pest simulation models. Environ. Entomol. 17, 359–376.

    Google Scholar 

  • Logan, J. A. and G. D. Amman (1986). A distribution model for egg development in mountain pine beetle. Can. Entomol. 118, 361–372.

    Google Scholar 

  • Logan, J. A. and B. J. Bentz (1999). Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality. Environ. Entomol. 28, 924–934.

    Google Scholar 

  • Logan, J. A., D. J. Wollkind, S. C. Hoyt and L. K. Tanigoshi (1976). An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133–1140.

    Google Scholar 

  • Reid, R. W. (1962). Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay region of British Columbia. I. Life cycle, brood development and flight periods. Can. Entomol. 94, 531–538.

    Article  Google Scholar 

  • Safranyik, L. and H. S. Whitney (1985). Development and survival of axenically reared mountain pine beetles, Dendroctonus ponderosae (Coleoptera: Scolytidae), at constant temperatures. Can. Entomol. 117, 185–192.

    Article  Google Scholar 

  • Taylor, F. (1981). Ecology and evolution of physiological time in insects. Am. Nat. 117, 1–23.

    Article  Google Scholar 

  • Wygant, N. D. (1942). Effects of low temperature on the Black Hills beetle (Dendroctonus ponderosae). Unpublished report. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Ft. Collins, Colorado.

  • Zaslavski, V. A. (1988). Insect Development: Photoperiodic and Temperature Control, Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Powell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, J.A., Jenkins, J.L., Logan, J.A. et al. Seasonal temperature alone can synchronize life cycles. Bull. Math. Biol. 62, 977–998 (2000). https://doi.org/10.1006/bulm.2000.0192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0192

Keywords

Navigation