Skip to main content

Advertisement

Log in

Local populations of different sizes, mechanistic rescue effect and patch preference in the Levins metapopulation model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper three extensions of the Levins metapopulation model are discussed: (1) It is shown that the Levins model is still valid if patches contain local populations of different sizes with different colonization and extinction rates. (2) A more mechanistic formulation of the rescue effect is presented. (3) The addition of preference of dispersers for occupied or empty patches and its consequences for conservation strategies are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M. and R. M. May (1991). Infectious Diseases of Humans, Oxford: Oxford University Press.

    Google Scholar 

  • Brown, J. H. and A. Kodric-Brown (1977). Turnover rate in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449.

    Article  Google Scholar 

  • Casagrandi, R. and M. Gatto (1999). A mesoscale approach to extinction risk in fragmented habitats. Nature 400, 560–562.

    Article  Google Scholar 

  • Diekmann, O. and J. A. P. Heesterbeek (2000). Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Chichester: John Wiley and Sons.

    Google Scholar 

  • Etienne, R. S. and J. A. P. Heesterbeek (2000). On optimal size and number of reserves for metapopulation persistence. J. Theor. Biol. 203, 33–50.

    Article  Google Scholar 

  • Gyllenberg, M. and I. A. Hanski (1992). Single-species metapopulation dynamics: A structured model. Theor. Popul. Biol. 42, 35–61.

    Article  MathSciNet  Google Scholar 

  • Gyllenberg, M. and I. A. Hanski (1997). Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theor. Popul. Biol. 52, 198–215.

    Article  Google Scholar 

  • Gyllenberg, M., I. A. Hanski and A. Hastings (1997). Structured metapopulation models, in Metapopulation Biology. Ecology, Genetics and Evolution, I. A. Hanski and M. E. Gilpin (Eds), San Diego: Academic Press, pp. 93–122.

    Google Scholar 

  • Hanski, I. A. (1983). Coexistence of competitors in patchy environment. Ecology 64, 493–500.

    Article  Google Scholar 

  • Hanski, I. A. (1985). Single-species spatial dynamics may contribute to long-term rarity and commonness. Ecology 66, 335–343.

    Article  Google Scholar 

  • Hanski, I. A. (1994). A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151–162.

    Google Scholar 

  • Hanski, I. A. and M. E. Gilpin (Eds) (1997). Metapopulation Biology. Ecology, Genetics, and Evolution, San Diego: Academic Press.

    Google Scholar 

  • Hanski, I. A. and M. Gyllenberg (1993). Two general metapopulation models and the core-satellite species hypothesis. Am. Nat. 142, 17–41.

    Article  Google Scholar 

  • Hanski, I. A., A. Moilanen and M. Gyllenberg (1996). Minimum viable metapopulation size. Am. Nat. 147, 527–541.

    Article  Google Scholar 

  • Hanski, I. A. and D. Simberloff (1997). The metapopulation approach; its history, conceptual domain, and application to conservation, in Metapopulation Biology. Ecology, Genetics and Evolution, I. A. Hanski and M. E. Gilpin (Eds), San Diego: Academic Press, pp. 5–26.

    Google Scholar 

  • Hanski, I. A. and D.-Y. Zhang (1993). Migration, metapopulation dynamics and fugitive co-existence. J. Theor. Biol. 163, 491–504.

    Article  Google Scholar 

  • Hasibeder, G. (1996). When susceptible and infective human hosts are not equally attractive to mosquitoes: a generalization of the Ross Malaria Model, in Models for Infectious Human Diseases. Their Structure and Relation to Data, V. Isham and G. Medley (Eds), Cambridge: Cambridge University Press, pp. 206–209.

    Google Scholar 

  • Hastings, A. (1991). Structured models of metapopulation dynamics. Biol. J. Linn. Soc. 42, 57–70.

    Google Scholar 

  • Hess, G. R. (1996). Linking extinction to connectivity and habitat destruction in metapopulation models. Am. Nat. 148, 226–236.

    Article  Google Scholar 

  • Lande, R. (1987). Extinction thresholds in demographic models of territorial populations. Am. Nat. 130, 624–635.

    Article  Google Scholar 

  • Lande, R. (1988a). Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia 75, 601–607.

    Article  Google Scholar 

  • Lande, R. (1988b). Genetics and demography in biological conservation. Science 241, 1455–1459.

    Google Scholar 

  • Lande, R. S., Engen and B.-E. Saether (1998). Extinction times in finite metapopulation models with stochastic local dynamics. Oikos 83, 383–389.

    Google Scholar 

  • Lawton, J. H., S. Nee, A. J. Letcher and P. H. Harvey (1994). Animal distributions: patterns and processes, in Large-Scale Ecology and Conservation Biology, P. J. Edwards, R. M. May and N. R. Webbs (Eds), Oxford: Blackwell, pp. 41–58.

    Google Scholar 

  • Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240.

    Google Scholar 

  • Levins, R. (1970). Some Mathematical Problems in Biology, M. Gertenhaber (Ed.), Providence, RI: American Mathematical Society, pp. 75–107.

    Google Scholar 

  • May, R. M. (1991). The role of ecological theory in planning reintroduction of endangered species. Symp. Zool. Soc. Lond. 62, 145–163.

    Google Scholar 

  • Moilanen, A. and I. A. Hanski (1995). Habitat destruction and coexistence of competitors in a spatially realistic metapopulation model. J. Anim. Ecol. 64, 141–144.

    Google Scholar 

  • Nee, S. (1994). How populations persist. Nature 367, 123–124.

    Article  Google Scholar 

  • Nee, S. and R. M. May (1992). Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 61, 37–40.

    Google Scholar 

  • Ray, C., M. Gilpin and A. T. Smith (1991). The effect of conspecific attraction on metapopulation dynamics. Biol. J. Linn. Soc. 42, 123–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etienne, R.S. Local populations of different sizes, mechanistic rescue effect and patch preference in the Levins metapopulation model. Bull. Math. Biol. 62, 943–958 (2000). https://doi.org/10.1006/bulm.2000.0186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0186

Keywords

Navigation