Skip to main content
Log in

Controlling chaos in ecology: From deterministic to individual-based models

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The possibility of chaos control in biological systems has been stimulated by recent advances in the study of heart and brain tissue dynamics. More recently, some authors have conjectured that such a method might be applied to population dynamics and even play a nontrivial evolutionary role in ecology. In this paper we explore this idea by means of both mathematical and individual-based simulation models. Because of the intrinsic noise linked to individual behavior, controlling a noisy system becomes more difficult but, as shown here, it is a feasible task allowed to be experimentally tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. C., W. M. Schaffer and D. Rosko (1993). Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–232.

    Article  Google Scholar 

  • Astakhov, V. V., V. S. Ansihehenko and A. V. Shabunin (1995). Controlling spatiotemporal chaos in a chain of coupled logistic maps. IEEE Trans. Circuits Syst. 1 42, 352–357.

    Article  Google Scholar 

  • Bascompte, J. and R. V. Solé (1995). Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends Ecol. Evol. 10, 361–366.

    Article  Google Scholar 

  • Berryman, A. A. and J. A. Millstein (1989). Are ecological systems chaotic—and if not, why not? Trends Ecol. Evol. 4, 26–28.

    Article  Google Scholar 

  • Constantino, R. F., J. M. Cushing, B. Dennis and R. A. Desharnais (1995). Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375, 227–230.

    Article  Google Scholar 

  • Constantino, R. F., R. A. Desharnais, J. M. Cushing and B. Dennis (1997). Chaotic dynamics in an insect populations. Science 275, 389–391.

    Article  Google Scholar 

  • Dennis, B., R. A. Desharnais, J. M. Cushing and R. F. Constantino (1997). Transitions in population dynamics: equilibria to periodic cycles to aperiodic cycles. J. Anim. Ecol. 66, 704–729.

    Google Scholar 

  • Ditto, W. L., S. N. Rauseo and M. L. Spano (1990). Experimental control of chaos. Phys. Rev. Lett. 65, 3211–3214.

    Article  Google Scholar 

  • Ditto, W. L., M. L. Spano and J. F. Lindner (1995). Techniques for the control of chaos. Physica D 86, 198–211.

    Article  Google Scholar 

  • Doebeli, M. (1993). The evolutionary advantage of controlled chaos. Proc. R. Soc. Lond. B 254, 281–285.

    Google Scholar 

  • Doebeli, M. and G. D. Ruxton (1997). Controlling spatiotemporal chaos in metapopulations with long-range dispersal. Bull. Math. Biol. 59, 497–515.

    Article  Google Scholar 

  • Fox, R. F. and J. E. Keitzer (1990). Effect of molecular fluctuations on the description of chaos by microvariable equations. Phys. Rev. Lett. 64, 249–251.

    Article  MathSciNet  Google Scholar 

  • Garfinkel, A., M. L. Spano, W. L. Ditto and J. N. Weiss (1992). Controlling cardiac chaos. Science 257, 1230–1235.

    Google Scholar 

  • Godfray, H. C. J. and S. P. Blythe (1990). Complex dynamics in multispecies communities. Phil. Trans. R. Soc. Lond. B 330, 221–233.

    Google Scholar 

  • Güemez, J. and M. A. Matías (1993). Control of chaos in uni-dimensional maps. Phys. Lett. A 181, 29–32.

    Article  MathSciNet  Google Scholar 

  • Hassell, M. P., J. H. Lawton and R. M. May (1976). Patterns of dynamical behavior in single-species populations. J. Anim. Ecol. 45, 471–486.

    Google Scholar 

  • Hastings, A. (1993). Complex interactions between dispersal and dynamics, lessons from coupled logistic equations. Ecology 74, 1362–1372.

    Article  Google Scholar 

  • Hastings, A. and T. Powell (1991). Chaos in a three-species food chain. Ecology 72, 896–903.

    Article  Google Scholar 

  • Judson, O. P. (1994). The rise of the individual-based model in ecology. Trends Ecol. Evol. 9, 9–14.

    Article  MATH  Google Scholar 

  • Kot, M., G. S. Sayler and T. W. Schultz (1992). Complex dynamics in a model microbial system. Bull. Math. Biol. 54, 619–648.

    Article  Google Scholar 

  • Lomnicki, A. (1989). Avoiding chaos. Trends Ecol. Evol. 4, 239.

    Article  Google Scholar 

  • May, R. M. (1974). Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 186, 645–647.

    Google Scholar 

  • May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature 261, 459–467.

    Article  Google Scholar 

  • May, R. M. and G. F. Oster (1976). Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–599.

    Article  Google Scholar 

  • McCallum, H. I. (1992). Effects of inmigration on chaotic population dynamics. J. Theor. Biol. 154, 277–284.

    Google Scholar 

  • McCann, K., A. Hastings and G. R. Huxel (1998). Weak trophic interactions and the balance of nature. Nature 395, 794–798.

    Article  Google Scholar 

  • Nisbet, R., S. Blythe, B. Gurney, H. Metz and K. Stokes (1989). Avoiding chaos. Trends Ecol. Evol. 4, 238–239.

    Article  Google Scholar 

  • Ott, E., C. Grebogi and J. A. Yorke (1990). Controlling chaos. Phys. Rev. Lett. 64, 1196–1199.

    Article  MathSciNet  Google Scholar 

  • Parthasarathy, S. and S. Sinha (1995). Controlling chaos in unidimensional maps using constant feedback. Phys. Rev. E 51, 6239–6242.

    Article  Google Scholar 

  • Peeters, P. and G. Nicolis (1992). Intrinsic fluctuations in chaotic dynamics. Physica A 188, 426–435.

    Article  Google Scholar 

  • Petrov, V., V. Gáspár, J. Masere and K. Showalter (1993). Controlling chaos in the Belousov—Zhabotinsky reaction. Nature 361, 240–243.

    Article  Google Scholar 

  • Pimm, S. L. (1991). The Balance of Nature?: Ecological Issues in the Conservation of Species and Communities, Chicago: University of Chicago Press.

    Google Scholar 

  • Ricker, W. E. (1954). Stock and recruitment. Fish. Res. Board. Canada 11, 559–623.

    Google Scholar 

  • Rinaldi, S., S. Muratori and Y. Kuznetsov (1993). Multiple attractors, catastrophes and chaos in seasonally perturbed predator—prey communities. Bull. Math. Biol. 55, 15–35.

    Article  Google Scholar 

  • Ringelberg, J. (1977). Properties of an aquatic microecosystem. II. Steady-state phenomena in the autotrophic subsystem. Helgoländer Meeresunters 30, 134–143.

    Article  Google Scholar 

  • Rohani, P. and D. J. D. Earn (1997). Chaos in a cup of flour. Trends Ecol. Evol. 12, 171.

    Article  Google Scholar 

  • Schaffer, W. M. (1984). Stretching and folding in lynx for returns: evidence for a strange attractor in nature? Am. Nat. 124, 798–820.

    Article  Google Scholar 

  • Schaffer, W. M. and M. Kot (1986). Chaos in ecological systems: the coals that Newcastle forgot. Trends Ecol. Evol. 1, 58–63.

    Article  Google Scholar 

  • Scheffer, M. (1991). Should we expect strange attractors behind plankton dynamics-and if so, should we bother? J. Plankton. Res. 13, 1291–1305.

    Google Scholar 

  • Schiff, S. J., K. Jerger, D. H. Duong, T. Chang, M. L. Spano and W. L. Ditto (1994). Controlling chaos in the brain. Nature 370, 615.

    Article  Google Scholar 

  • Solé, R. V. and J. G. P. Gamarra (1998). Chaos, dispersal and extinction in coupled ecosystems. J. Theor. Biol. 193, 539–541.

    Article  Google Scholar 

  • Solé, R. V. and L. Menéndez de la Prida (1995). Controlling chaos in discrete neural networks. Phys. Lett. A 199, 65–69.

    Article  Google Scholar 

  • Solé, R. V. and J. Valls (1992). Nonlinear phenomena and chaos in a Monte Carlo simulated microbial ecosystem. Bull. Math. Biol. 54, 939–955.

    Article  Google Scholar 

  • Stone, L. (1993). Period-doubling reversals and chaos in simple ecological models. Nature 365, 617–620.

    Article  Google Scholar 

  • Tilman, D. and D. Wedin (1991). Oscillations and chaos in the dynamics of a perennial grass. Nature 353, 653–655.

    Article  Google Scholar 

  • Wilson, W. G. (1998). Resolving discrepancies between deterministic population models and individual-based simulations. Am. Nat. 151, 116–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solé, R.V., Gamarra, J.G.P., Ginovart, M. et al. Controlling chaos in ecology: From deterministic to individual-based models. Bull. Math. Biol. 61, 1187–1207 (1999). https://doi.org/10.1006/bulm.1999.0141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0141

Keywords

Navigation