Skip to main content

Advertisement

Log in

Membrane skeleton detachment in spherical and cylindrical microexovesicles

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We observed that amphiphile-induced microexovesicles may be spherical or cylindrical, depending on the species of the added amphiphile. The spherical microexovesicle corresponds to an extreme local difference between the two monolayer areas of the membrane segment with a fixed area, while the cylindrical microexovesicle corresponds to an extreme local area difference if the area of the budding segment is increased due to lateral influx of anisotropic membrane constituents. Protein analysis showed that both types of vesicles are highly depleted in the membrane skeleton. It is suggested that a partial detachment of the skeleton in the budding region is favoured due to accumulated skeleton shear deformations in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, D., M. M. Billah, J. B. Finean and R. H. Michell (1976). Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracelular [Ca2+]. Nature 261, 58–60.

    Article  Google Scholar 

  • Andelman, D., T. Kawakatsu and K. Kawasaki (1992). Equilibrium shape of two-component unilamellar membranes and vesicles. Europhys. Lett. 19, 57–62.

    Google Scholar 

  • Bobrowska-Hägerstrand, M., H. Hägerstrand and A. Iglič (1998). Membrane skeleton and red blood cell vesiculation at low pH. Biochim. Biophys. Acta 1371, 123–128.

    Article  Google Scholar 

  • Boulbitch, A. A. (1998). Deflection of a cell membrane under application of local force. Phys. Rev. E 57, 1–5.

    Article  Google Scholar 

  • Bukman, D. J., J. H. Yao and M. Wortis (1996). Stability of cylindrical vesicles under axial tension. Phys. Rev. E 54, 5463–5468.

    Article  Google Scholar 

  • Bütikofer, P., U. Brodbeck and P. Ott (1987). Modulation of erythrocyte vesiculation by amphiphilic drugs. Biochim. Biophys. Acta 901, 291–295.

    Article  Google Scholar 

  • Discher, D. E. and N. Mohandas (1996). Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys. J. 71, 1680–1694.

    Google Scholar 

  • Discher, D. E., N. Mohandas and E. A. Evans (1994). Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266, 1032–1035.

    Google Scholar 

  • Evans, E. and R. Skalak (1980). Mechanics and Thermodynamics of Biomembranes, Boca Raton, FL: CRC Press.

    Google Scholar 

  • Fournier, J. B. (1996). Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys. Rev. Lett. 76, 4436–4439.

    Article  Google Scholar 

  • Gimsa, J. and C. Ried (1995). Do band 3 protein conformational changes mediate shape changes of human erythrocytes. Mol. Membr. Biol. 12, 247–254.

    Google Scholar 

  • Hägerstrand, H. and B. Isomaa (1989). Vesiculation induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 982, 179–186.

    Article  Google Scholar 

  • Hägerstrand, H. and B. Isomaa (1992). Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1109, 117–126.

    Article  Google Scholar 

  • Hägerstrand, H. and B. Isomaa (1994). Lipid and protein composition of exovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1190, 409–415.

    Article  Google Scholar 

  • Iglič, A. (1997). A possible mechanism determining the stability of spiculated red blood cells. J. Biomech. 30, 35–40.

    Article  Google Scholar 

  • Iglič, A. and H. Hägerstrand (1999). Amphiphile induced spherical microexovesicle corresponds to an extreme local area difference between two monolayers of the membrane bilayer. Med. Biol. Eng. Comput. 37, 125–129.

    Google Scholar 

  • Iglič, A., V. Kralj-Iglič and H. Hägerstrand (1998). Amphiphile induced echinocyte-spheroechinocyte red blood cell shape transformation. Eur. Biophys. J. 27, 335–339.

    Article  Google Scholar 

  • Iglič, A., S. Svetina and B. Žekš (1995). Depletion of membrane skeleton in red blood cell vesicles. Biophys. J. 69, 274–279.

    Google Scholar 

  • Isomaa, B., H. Hägerstrand and G. Paatero (1987). Shape transformations induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 899, 93–103.

    Article  Google Scholar 

  • Israelachvili, J. N., D. J. Mitchell and B. W. Ninham (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 72, 1525–1568.

    Article  Google Scholar 

  • Knowles, D. W., L. Tilley, N. Mohandas and J. A. Chasis (1997). Erythrocyte membrane vesiculation: model for the molecular mechanism of protein sorting. Proc. Natl. Acad. Sci. USA 94, 12696–12974.

    Google Scholar 

  • Kozlov, M. M., L. V. Chernomordik and V. S. Markin (1990). A mechanism of formation of protein-free regions in the red cell membrane: the rupture of the membrane skeleton. J. Theor. Biol. 144, 347–365.

    Google Scholar 

  • Kralj-Iglič, V., V. Heinrich, S. Svetina and B. Žekš (1999). Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B 10, 5–8.

    Article  Google Scholar 

  • Kralj-Iglič, V., S. Svetina and B. Žekš (1996). Shapes of bilayer vesicles with membrane embedded molecules. Eur. Biophys. J. 24, 311–321.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  Google Scholar 

  • Lange, Y., R. A. Hadesman and T. L. Steck (1982). Role of reticulum in the stability and shape of the isolated human erythrocyte membrane. J. Cell Biol. 92, 714–721.

    Article  Google Scholar 

  • Lipowsky, R. (1993). Domain induced budding of fluid membranes. Biophys. J. 64, 1133–1138.

    Google Scholar 

  • Liu, S. C., L. H. Derick, M. A. Duquette and J. Palek (1989). Separation of the lipid bilayer from the membrane skeleton during discocyte-echinocyte transformation of human erythrocyte ghosts. Eur. J. Cell Biol. 49, 358–365.

    Google Scholar 

  • Mohandas, N. and E. Evans (1994). Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Ann. Rev. Biophys. Biomol. Struct. 23, 787–818.

    Article  Google Scholar 

  • Saxton, M. J. (1992). Gaps in the erythrocyte membrane skeleton: a stretched net model. J. Theor. Biol. 155, 517–536.

    Google Scholar 

  • Seifert, U. (1997). Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13–137.

    Article  Google Scholar 

  • Sheetz, M. P. and S. J. Singer (1974). Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. 71, 4457–4461.

    Article  Google Scholar 

  • Steck, T. L. (1989). Red cell shape, in Cell Shape: Determinants, Regulation and Regulatory Role, W. Stein and F. Bronner (Eds), New York: Academic Press, pp. 205–246.

    Google Scholar 

  • Svetina, S., A. Ottova-Leitmannova and R. Glaser (1982). Membrane bending energy in relation to bilayer couples concept of red blood cell shape transformations. J. Theor. Biol. 94, 13–23.

    Article  Google Scholar 

  • Svoboda, K., C. F. Schmidt, D. Branton and S. M. Block (1992). Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys. J. 63, 784–793.

    Google Scholar 

  • Wagner, G. M., D. T. Y. Chiu, M. C. Yee and B. H. Lubin (1986). Red cell vesiculation—a common membrane physiological event. J. Lab. Clin. Invest. 108, 315–324.

    Google Scholar 

  • Waugh, R. E. (1996). Elastic energy of curvature-driven bump formation on red blood cell membrane. Biophys. J. 70, 1027–1035.

    Article  Google Scholar 

  • Wiese, W., W. Harbich and W. Helfrich (1992). Budding of lipid bilayer vesicles and flat membranes. J. Phys. Condens. Matter 4, 1647–1657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Iglič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hägerstrand, H., Kralj-Iglič, V., Bobrowska-Hägerstrand, M. et al. Membrane skeleton detachment in spherical and cylindrical microexovesicles. Bull. Math. Biol. 61, 1019–1030 (1999). https://doi.org/10.1006/bulm.1999.0128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0128

Keywords

Navigation