Skip to main content
Log in

Hypoxia and reoxygenation: A pressure for mutant p53 cell selection and tumour progression

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recent findings indicate that in a hypoxic environment, oncogenically transformed cells with a mutant form of the tumour suppressor gene p53 may have a survival advantage over similar cells with wild-type p53. This is because the extent of hypoxia-induced apoptosis has been observed to diminish with the loss of wild-type p53 function in certain cell lines. Hypoxic conditions, common in most solid tumours, may thus provide a physiological pressure to select for cells with mutations in the p53 gene. A new model incorporating cell-specific parameters is proposed here to quantify the survival advantage of mutant or null p53 cells over their wild-type counterparts at any level of oxygen deprivation. Predictions are in good agreement with previous monolayer culture experiments comparing hypoxic survival of null and wild-type p53 cells. By extending the model we are able to investigate the effects of repeated rounds of hypoxia and reoxygenation on a mixture of wild-type and mutant or null p53 cells and determine how many rounds are required before a subpopulation of mutant or null p53 cells overtakes a given population of wild-type p53 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amellem, Ø., T. Stokke, J. A. Sandvik, L. Smedshammer and E. O. Pettersen (1997). Hypoxia-induced apoptosis in human cells with normal p53 status and function, without any alteration in the nuclear protein level. Exp. Cell Res. 232, 361–370.

    Article  Google Scholar 

  • An, W. G., M. Kanekal, M. C. Simon, E. Maltepe, M. V. Blagosklonny and L. M. Neckers (1998). Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392, 405–408.

    Article  Google Scholar 

  • Bristow, R. G., S. Benchimol and R. P. Hill (1996). The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother. Oncol. 40, 197–223.

    Article  Google Scholar 

  • Brown, J. M. (1979). Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br. J. Radiol. 52, 650–656.

    Article  Google Scholar 

  • Brown, J. M. and A. J. Giaccia (1998). The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416.

    Google Scholar 

  • Carmeliet, P., et al. (1997). Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490.

    Article  Google Scholar 

  • Casciari, J. J., S. V. Sotirchos and R. M. Sutherland (1988). Glucose diffusivity in multicellular tumour spheroids. Cancer Res. 48, 3905–3909.

    Google Scholar 

  • Casciari, J. J., S. V. Sotirchos and R. M. Sutherland (1992). Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration and extracellular pH. J. Cell. Physiol. 151, 386–394.

    Article  Google Scholar 

  • Chaplain, M. A. J. and N. F. Britton (1993). On the concentration profile of a growth inhibitory factor in multicell spheroids. Math. Biosci. 115, 233–245.

    Article  MATH  Google Scholar 

  • Clarke, A. R., C. A. Purdie, D. J. Harrison, R. G. Morris, C. C. Bird, M. L. Hooper and A. H. Wyllie (1993). Thymcyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852.

    Article  Google Scholar 

  • Dewhirst, M. W., C. Y. Tso, R. Oliver, C. S. Gustafson, T. W. Secomb and J. F. Gross (1989). Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int. J. Radiat. Oncol. Biol. Phys. 17, 91–99.

    Google Scholar 

  • Fritsche, M., C. Haessler and G. Brandner (1993). Induction of nuclear accumulation of the tumour suppressor protein p53 by DNA-damaging agents. Oncogene 8, 307–318.

    Google Scholar 

  • Graeber, T. G., C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe and A. J. Giaccia (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91.

    Article  Google Scholar 

  • Graeber, T. G., J. F. Peterson, T. Mitchell, K. Monica, A. J. Fornace, Jr. and A. J. Giaccia (1994). Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14, 6264–6277.

    Google Scholar 

  • Greenblatt, M. S., W. P. Bennett, M. Hollstein and C. C. Harris (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878.

    Google Scholar 

  • Greenspan, H. P. (1972). Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 52, 317–340.

    Google Scholar 

  • Groebe, K. and W. Mueller-Klieser (1991). Distributions of oxygen, nutrient, and metabolic waste concentrations in multicellular spheroids and their dependence on spheroid parameters. Eur. Biophys. J. 19, 169–181.

    Article  Google Scholar 

  • Grunt, T. W., A. Lametschwandtner and O. Staindl (1985). The vascular pattern of basal cell tumors: light microscopy and scanning electron microscopic study on vascular corrosion casts. Microvas. Res. 29, 371–386.

    Article  Google Scholar 

  • Harris, C. C. and M. Hollstein (1993). Clinical implications of the p53 tumor-suppressor gene. New Engl. J. Med. 329, 1318–1327.

    Article  Google Scholar 

  • Helmlinger, G., F. Yuan, M. Dellian and R. K. Jain (1997). Interstitial pH and pO 2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182.

    Article  Google Scholar 

  • Hollstein, M., D. Sidransky, B. Vogelstein and C. C. Harris (1991). p53 mutations in human cancers. Science 253, 49–53.

    Google Scholar 

  • Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein and R. W. Craig (1991). Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311.

    Google Scholar 

  • Kieser, A., H. A. Weich, G. Brandner, D. Marme and W. Kolch (1994). Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 9, 963–969.

    Google Scholar 

  • Kuerbitz, S. J., B. S. Plunkett, W. V. Walsh and M. B. Kastan (1992). Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89, 7491–7495.

    Article  Google Scholar 

  • Lane, D. P. (1992). p53, guardian of the genome. Nature 358, 15–16.

    Article  Google Scholar 

  • Levine, A. J., M. E. Perry, A. Chang, A. Silver, D. Dittmer, M. Wu and D. Welsh (1994). The 1993 Walter Hubert Lecture: The role of the p53 tumour-suppressor gene in tumorigenesis. Br. J. Cancer 69, 409–416.

    Google Scholar 

  • Lowe, S. W. (October 1998). Personal communication.

  • Lowe, S. W., S. Bodis, A. McClatchey, L. Remington, H. E. Ruley, D. E. Fisher, D. E. Housman and T. Jacks (1994). p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810.

    Google Scholar 

  • Lu, X. and D. P. Lane (1993). Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75, 765–778.

    Article  Google Scholar 

  • Maltzman, W. and L. Czyzyk (1984). UV irradiation stimulates levels of p53 cellular tumour antigen in nontransformed mouse cells. Mol. Cell. Biol. 4, 1689–1694.

    Google Scholar 

  • Royds, J. A., S. K. Dower, E. E. Qwarnstrom and C. E. Lewis (1998). Response of tumour cells to hypoxia: role of p53 and NFkB. Mol. Pathol. 51, 55–61.

    Article  Google Scholar 

  • Sutherland, R. M. (1986). Importance of critical metabolites and cellular interactions in the biology of microregions of tumors. Cancer 58, 1668–1680.

    Google Scholar 

  • Thomlinson, R. H. (1977). Hypoxia and tumours. J. Clin. Pathol. 30, 105–113.

    Google Scholar 

  • Thomlinson, R. H. and L. H. Gray (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549.

    Google Scholar 

  • Vaupel, P. W. and M. Höckel (1995). Oxygenation status of human tumors: A reappraisal usingcomputerized pO2 histography, in Tumour Oxygenation, New York: Gustav Fischer Verlag, pp. 219–231.

    Google Scholar 

  • Vaupel, P., K. Schlenger, C. Knoop and M. Höckel (1991). Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51, 3316–3322.

    Google Scholar 

  • Wang, T. and H. Wang (1996). p53, apoptosis and human cancers. J. Formosan Med. Assoc. 95, 509–523.

    Google Scholar 

  • Zhan, Q., F. Carrier and A. J. Fornace Jr. (1993). Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol. Cell. Biol. 13, 4242–4250.

    Google Scholar 

  • Ziegler, A., A. S. Jonason, D. J. Leffell, J. A. Simon, H. W. Sharma, J. Kimmelman, L. Remington, T. Jacks and D. E. Brash (1994). Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, K.E., Royds, J.A. Hypoxia and reoxygenation: A pressure for mutant p53 cell selection and tumour progression. Bull. Math. Biol. 61, 759–778 (1999). https://doi.org/10.1006/bulm.1999.0109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0109

Keywords

Navigation