Skip to main content
Log in

The effect of heterogeneously-distributed RyR channels on calcium dynamics in cardiac myocytes

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Calcium plays an essential role in excitation-contraction coupling in muscle, and derangements in calcium handling can produce a variety of potentially harmful conditions, especially in cardiac muscle. In cardiac tissue specialized invaginations of the sarcolemma, called T-tubules, penetrate deep into each sarcomere, and depolarization of the SL leads to an influx of calcium through voltage-sensitive channels in the T-tubules that in turn triggers further calcium release from the sarcoplasmic reticulum via ryanodine-sensitive calcium channels. Under certain conditions, such as elevated external Ca2+, cardiac cells can release calcium from the sarcoplasmic reticulum spontaneously, producing a calcium ’spark’ and propagating traveling waves of elevated Ca2+ concentration, without depolarization of the SL (Wier and Blatter, 1991a, Cell Calcium 12, 241–254; Williams, 1993, Cell Calcium 14, 724–735; Cheng et al., 1993a, Science 262, 740–744). However, under normal resting conditions these potentially harmful waves seldom occur. In this paper we investigate the role of the periodic distribution of ryanodine-sensitive channels in determining whether a spark can trigger a wave, using a modification of the kinetic model proposed by Tang and Othmer, 1994b, Biophys. J. 67, 2223–2235, for calcium-induced calcium release. We show that the spatial localization of these channels near the T-tubules has a significant effect on both wave propagation and the onset of oscillations in this system. Spatial localization provides a possible explanation for the differing effects of various experimental protocols on the system’s ability to propagate a traveling wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbritton, N. L. and T. Meyer (1993). Localized calcium spikes and propagating calcium waves. Cell Calcium 14, 691–697.

    Article  Google Scholar 

  • Bell, J. (1990). Excitability behaviour of myelinated axon models, in Reaction-Diffusion Equations, K. J. Brown and A. A. Lacey (Eds), New York: Clarendon, pp. 95–116.

    Google Scholar 

  • Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. Nature 361, 315–325.

    Article  Google Scholar 

  • Bers, D. M. (1991a). Excitation-Contraction Coupling and Cardiac Contractile Force, Dordrecht: Kluwer.

    Google Scholar 

  • Bers, D. M. (1991b). Excitation-Contraction Coupling and Cardiac Contractile Force, Norwell, MA: Kluwer.

    Google Scholar 

  • Beuckelmann, D. and W. Wier (1988). Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J. Physiol. 405, 233–255.

    Google Scholar 

  • Bugrim, A. E., A. M. Zhabotinsky and I. R. Epstein (1997). Calcium waves in a model with a random spatially discrete distribution of Ca2+ release sites. Biophys. J. 73, 2897.

    Google Scholar 

  • Cannell, M. B., H. Cheng and W. J. Lederer (1994). Spatial nonuniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Biophys. J. 67, 1942–1956.

    Google Scholar 

  • Cheek, T. R., M. J. Berridge, R. B. Moreton and K. A. Stauderman (1994). Quantal Ca020+ mobilization by ryanodine receptors is due to all-or-none release from functionally discrete intracellular stores. Biochem. J. 301, 879.

    Google Scholar 

  • Cheng, H., W. J. Lederer and M. B. Cannell (1993a). Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744.

    Google Scholar 

  • Cheng, H., W. J. Lederer and M. B. Cannell (1993b). Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744.

    Google Scholar 

  • Cheng, H., M. Fill, H. Valdivia and W. J. Lederer (1995). Models of Ca2+ release channel adaptation. Science 267, 2009–2010.

    Google Scholar 

  • Cheng, H., M. R. Lederer, W. J. Lederer and M. B. Cannell (1996a). Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am. J. Physiol. 270, C148–C159.

    Google Scholar 

  • Cheng, H., M. R. Lederer, R.-P. Xiao, A. M. Gómez, Y.-Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta and W. J. Lederer (1996b). Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium 20, 129–140.

    Article  Google Scholar 

  • Dupont, G. and A. Goldbeter (1992). Oscillations and waves of cytosolic calcium: insights from theoretical models. BioEssays 14, 485–493.

    Article  Google Scholar 

  • Dupont, G. and A. Goldbeter (1994). Properties of intracellular Ca2+ waves generated by a model based on Ca2+-induced Ca2+ release. Biophys. J. 67, 2191–2204.

    Google Scholar 

  • Fabiato, A. (1985). Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85, 247–289.

    Article  Google Scholar 

  • Fabiato, A. (1992). Two kinds of calcium-induced release of calcium from the sarcoplasmic recticulum of skinned cardiac cells, in Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle, New York: Plenum, pp. 245–263.

    Google Scholar 

  • Fay, F. S. (1995). Calcium sparks in vascular smooth muscle: relaxation regulators. Science 270, 588–589.

    Google Scholar 

  • Gyorke, S. and M. Fill (1993). Ryanodine receptor adaptation: control mechanism of Ca2+C induced Ca2+ release in heart. Science 260, 807–809.

    Google Scholar 

  • Hindmarsh, A. C. (1983). ODEPACK: a systematized collection of ODE solvers, in Scientific Computing, R. S. Stepleman (Ed.), Amsterdam: North-Holland, pp. 55–64.

    Google Scholar 

  • Ikemoto, Noriaki, Antoniu, Bozena, Kang and Jaw-Jou (1992). Characterization of depolarization-induced calcium release from sarcoplasmic reticulum in vitro with the use of membrane potential probe. Biochem. Biophys. Res. Comm. 184, 538–543.

    Article  Google Scholar 

  • Jaffe, L. F. (1993). Classes and mechanisms of calcium waves. Cell Calcium 14, 736–745.

    Article  Google Scholar 

  • Katz, B. (1992). Physiology of the Heart, 2nd edn, New York: Raven Press.

    Google Scholar 

  • Keizer, J. and L. Levine (1996). Ryanodine receptor adaptation and Ca2+-Induced Ca2+ release-dependent Ca2+ oscillations. Biophys. J. 71, 3477–3487.

    Google Scholar 

  • Keizer, J., Y.-X. Li, S. Stojilkovic and J. Rinzel (1995). InsP3-induced excitability of the endoplasmic reticulum. Mol. Biol. Cell 6, 945–951.

    Google Scholar 

  • Keizer, J. and G. D. Smith (1998). Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes. Biophys. Chem. 72, 87

    Article  Google Scholar 

  • Keizer, J., G. D. Smith, S. Ponce-Dawson and J. Pearson (1998). Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys. J. 75, 595–600.

    Google Scholar 

  • Laver, D. R. and G. D. Lamb (1998). Inactivation of Ca2+ release channels (ryanodine receptors RyR1 and RyR2) with rapid steps in [Ca2+] and voltage. Biophys. J. 74, 2352–2364.

    Google Scholar 

  • Li, Y.-X., J. Keizer, S. S. Stojilkovic and J. Rinzel (1995). Ca2+ excitability of the ER membrane: an explanation for IP3-induced Ca2+ oscillations. Am. J. Physiol. 269, C1079–C1092.

    Google Scholar 

  • Lipp, P. and E. Niggli (1994). Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Circ. Res. 74, 979–990.

    Google Scholar 

  • Lipp, P. and E. Niggli (1996). Submicroscopic calcium signals as fundamental events of excitation-contraction coupling in guinea-pig cardiac myocytes. J. Physiol. 492, 31–38.

    Google Scholar 

  • López-López, J. R., P. S. Shacklock, C. W. Balke and W. G. Wier (1994). Local, stochastic release of Ca2+ in voltage-clamped rat heart cells: visualization with confocal microscopy. J. Physiol. 480, 21–29.

    Google Scholar 

  • López-López, J. R., P. S. Shacklock, C. W. Balke and W. G. Wier (1995). Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268, 1042–1045.

    Google Scholar 

  • Monck, J. R., I. M. Robinson, A. L. Escobar, J. L. Vergara and J. M. Fernandez (1994). Pulsed laser imaging of rapid Ca2+ gradients in excitable cells. Biophys. J. 67, 505–514.

    Google Scholar 

  • Nelson, M. T., H. Cheng, M. Rubart, L. F. Santana, A. D. Bonev, H. J. Knot and W. J. Lederer (1995). Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637.

    Google Scholar 

  • Neu, J. C. and W. Krassowska (1993). Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21, 137–199.

    Google Scholar 

  • Niggli, E. and P. Lipp (1995). Subcellular features of calcium signalling in heart muscle: what do we learn? Cardiovasc. Res. 29, 441–448.

    Article  Google Scholar 

  • Othmer, H. G. (1983). A continuum model for coupled cells. J. Math. Biol. 17, 351–369.

    Article  MATH  MathSciNet  Google Scholar 

  • Othmer, H. G. and P. Schaap (1998). Oscillatory cAMP Signaling in the Development of Dictyostelium discoideum. Comments Theor. Biol. 5, 175–282.

    Google Scholar 

  • Othmer, H. G. and Y. Tang (1993). Oscillations and waves in a model of IP3-controlled calcium dynamics, in Experimental and Theoretical Advances in Pattern Formation, H. G. Othmer, P. K. Maini and J. D. Murray (Eds), New York: Plenum, pp. 277–313.

    Google Scholar 

  • Parker, I., J. Choi and Y. Yao (1996b). Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium 20, 105–121.

    Article  Google Scholar 

  • Parker, I. and I. Ivorra (1993). Confocal microfluorimetry of Ca2+ signals evoked in Xenopus oocytes by photoreleased inositol trisphosphate. J. Physiol. 461, 133–165.

    Google Scholar 

  • Parker, I. and Y. Yao (1991). Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc. R. Soc. Lond. B241, 269–274.

    Google Scholar 

  • Parker, I. and Y. Yao (1995). Calcium puffs in Xenopus oocytes. Ciba Symp. 188, 50–65.

    Google Scholar 

  • Parker, I., W. J. Zang and W. G. Wier (1996a). Ca2+ sparks involving multiple Ca2+ release sites along Z-lines in rat heart cells. J. Physiol. 497, 31–38.

    Google Scholar 

  • Parys, J. B., L. Missiaen, H. D. Smedt, I. Sienaert and R. Casteels (1996). Mechanisms responsible for quantal Ca2+ release from inositol trisphosphate-sensitive calcium stores. Pflugers Archiv: Eur. J. Physiol. 432, 359.

    Article  Google Scholar 

  • Peskoff, A., J. A. Post and G. A. Langer (1992). Sarcolemmal calcium binding sites in heart: II. Mathematical model for diffusion of calcium released from the sarcoplamic reticulum into the diadic region. J. Membrane Biol. 129, 59–69.

    Article  Google Scholar 

  • Putney, J. W. Jr. and G. St. J. Bird (1993) The inositol phosphate-calcium signalling system in nonexcitable cells. Endocrine Rev. 14, 610–631.

    Article  Google Scholar 

  • Rooney, T. A. and A. P. Thomas (1993). Intracellular calcium waves generated by Ins(1, 4, 5) P 3-dependent mechanisms. Cell Calcium 14, 674–690.

    Article  Google Scholar 

  • Rousseau, E., J. S. Smith, J. S. Henderson and G. Meissner (1986). Single channel and 45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. Biophys. J. 50, 1009–1014.

    Google Scholar 

  • Sachs, F., F. Qin and P. Palade (1995). Models of Ca2+ release channel adaptation. Science 267, 2010–2011.

    Google Scholar 

  • Schiefer, A., G. Meissner and G. Isenberg (1995). Ca2+ activation and Ca2+ inactivation oc canine reconstituted cardiac sarcoplasmic reticulum Ca2+-release channels. J. Physiol. 489, 337–348.

    Google Scholar 

  • Shacklock, P. S., W. G. Wier and C. W. Balke (1995). Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J. Physiol. 487, 601–608.

    Google Scholar 

  • Shigesada, N., K. Kawasaki and E. Teramoto (1985). The speeds of traveling frontal waves in heterogeneous environments, in Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences: Proceedings of an International Symposium held in Kyoto, November 10–15, 1985, E. Teramoto and M. Yamaguchi (Eds), Heidelberg: Springer-Verlag. Lecture Notes in Biomathematics 71, 88–97.

    Google Scholar 

  • Shigesada, N., K. Kawasaki and E. Teramoto (1986). Traveling periodic waves in heterogeneous environments. Theor. Pop. Biol. 30, 143–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Spencer, C. I. and J. R. Berlin (1997). Calcium-induced release of strontium ions from the sarcoplasmic reticulum of rat cardiac ventricular myocytes. J. Physiol. 504, 565–578.

    Article  Google Scholar 

  • Spiro, P. A. (1997). Mathematical studies of cell signal transduction, PhD thesis, University of Utah.

  • Stern, M. D. (1992). Theory of excitation-contraction coupling in cardiac muscle. Biophys. J. 63, 497–517.

    Google Scholar 

  • Stern, M. D., M. C. Capogrossi and E. G. Lakatta (1988). Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: mechanisms and consequences. Cell Calcium 9, 247–256.

    Article  Google Scholar 

  • Tanaka, H., T. Sekine, T. Kawanishi, R. Nakamura and K. Shigenobu (1998). Intrasarcomere [Ca2+] gradients and their spatio-temporal relation to Ca2+ sparks in rat cardiomyocytes. J. Physiol. 508, 145–152.

    Google Scholar 

  • Tang, Y. and H. Othmer (1994a). A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys. J. 67, 2223–2235.

    Google Scholar 

  • Tang, Y. and H. G. Othmer (1994b). A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys. J. 67, 2223–2235.

    Article  Google Scholar 

  • Tang, Y., J. Stephenson and H. Othmer (1996). Simplification and analysis of models of calcium dynamics based on IP-sensitive calcium channel kinetics. Biophys. J. 70.

  • Taylor, C. W. (1994). Ca2+ sparks a wave of excitement. TIPS 15, 271–274.

    Google Scholar 

  • Tsugorka, A., E. Ríos, L. A. Blattner (1995). Imaging elementary events of calcium release in skeletal muscle cells. Science 269, 1723–1726.

    Google Scholar 

  • Valdivia, H., J. Kaplan, G. Ellis-Davies and J. Lederer (1995). Rapid adaptation of cardiac ryanodine receptors: modulation byMg2+ and phosphorylation. Science 267, 1997–2000.

    Google Scholar 

  • Vélez, P., S. Györke, A. L. Escobar and M. Fill (1997). Adaptation of single cardiac ryanodine receptor channels. Biophys. J. 72, 691–697.

    Google Scholar 

  • Wier, W. G. and L. A. Blatter (1991a). Ca2+-oscillations and Ca2+-waves in mammalian cardiac and vascular smooth muscle cells. Cell Calcium 12, 241–254.

    Article  Google Scholar 

  • Wier, W. G. and L. A. Blatter (1991b). Ca2+-oscillations and Ca2+-waves in mammalian cardiac and vascular smooth muscle cells. Cell Calcium 12, 241–254.

    Article  Google Scholar 

  • Wier, W. G., J. R. López-López, P. S. Shacklock and C. W. Balke (1995). Calcium signalling in cardiac muscle cells. Ciba Symp. 188, 146–164.

    Google Scholar 

  • Williams, D. A. (1993). Mechanisms of calcium release and propagation in cardiac cells: do studies with confocal microscopy add to our understanding? Cell Calcium 14, 724–735.

    Article  Google Scholar 

  • Xin, J. X. and J. Zhu (1995). Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic media. Physica D81, 94–110.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH Grant GM29123.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiro, P.A., Othmer, H.G. The effect of heterogeneously-distributed RyR channels on calcium dynamics in cardiac myocytes. Bull. Math. Biol. 61, 651–681 (1999). https://doi.org/10.1006/bulm.1999.0101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0101

Keywords

Navigation