Skip to main content
Log in

Modelling the internalization of labelled cells in tumour spheroids

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper a mathematical model is developed to describe the migration of labelled particles within a multicell spheroid. In the model, spatial variations in cell proliferation and death create an internal velocity field which leads to redistribution of the labelled and unlabelled cells. By applying a range of numerical and analytical techniques to the model equations, it is possible to show that, whilst the speed with which the labelled cells migrate through the tumour is independent of the type of cells that are labelled, their limiting distribution depends crucially on whether inert polystyrene microspheres or live tumour cells are labelled. These predictions are shown to be in good qualitative agreement with independent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J. A. (1987). A mathematical model of tumour growth. II Effects of geometry and spatial uniformity on stability. Math. Biosci. 86, 183–211.

    Article  MATH  Google Scholar 

  • Adam, J. A. and S. A. Maggelakis (1990). Diffusion regulated growth characteristics of a spherical prevascular carcinoma. Bull. Math. Biol. 52, 549–582.

    Article  MATH  Google Scholar 

  • Boyden, S. V. (1962). The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med. 115, 453–466.

    Article  Google Scholar 

  • Byrne, H. M. and M. A. J. Chaplain (1997). The importance of inter-cellular adhesion in the development of carcinomas. IMA J. Math. Med. Biol. 14, 305–323.

    MATH  Google Scholar 

  • Byrne, H. M. and M. A. J. Chaplain, (1998). Necrosis and apoptosis: distinct cell loss mechanisms in a mathematical model of avascular tumour growth. J. Theor. Med. 1, 223–236.

    Article  MATH  Google Scholar 

  • Cliff, W. J. (1963). Observations on healing tissue: a combined light and electron microscope investigation. Trans. R. Soc. Lond. B246, 305–325.

    Google Scholar 

  • Cliff, W. J. (1965). Kinetics of wound healing in rabbit ear chambers: a time lapse cinemicroscopic study. Q. J. Exp. Physiol. Cog. Med. Sci. 50, 79–89.

    Google Scholar 

  • Crank, J. (1988). Free and Moving Boundary Problems, Oxford: Oxford University Press.

    Google Scholar 

  • Dorie, M. J., R. F. Kallman, D. F. Rapacchietta, D. Van Antwerp and Y. R. Huang (1982). Migration and internalization of cells and polystyrene microspheres in tumour cell spheroids. Exp. Cell. Res. 141, 201–209.

    Article  Google Scholar 

  • Dorie, M. J., R. F. Kallman and M. A. Coyne (1986). Effect of Cytochalasin B Nocodazole on migration and internalization of cells and microspheres in tumour cells. Exp. Cell. Res. 166, 370–378.

    Article  Google Scholar 

  • Fan, T. D. and P. J. Polverini (1997). In vivo models of angiogenesis, in Tumour Angiogenesis, R. Bicknell, C. E. Lewis and N. Ferrara (Eds), Oxford: Oxford University Press.

    Google Scholar 

  • Folkman, J. and M. Hochberg (1973). Self-regulation of growth in three dimensions. J. Exp. Med. 138, 745–753.

    Article  Google Scholar 

  • Graeber, T. G., C. Osmanian, D. E. Hausman, C. J. Koch. S. W. Lowe and A. J. Giaccia (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91.

    Article  Google Scholar 

  • Greenspan, H. P. (1972). Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 52, 317–340.

    Google Scholar 

  • Greenspan, H. P. (1976). On the growth and stability of cell cultures and solid tumours. J. Theor. Biol. 56, 229–242.

    MathSciNet  Google Scholar 

  • Kerr, J. F. R., A. H. Wyllie and A. R. Currie (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.

    Google Scholar 

  • McElwain, D. L. S. and G. J. Pettet (1993). Cell migration in multicell spheroids: swimming against the tide. Bull. Math. Biol. 55, 655–674.

    Article  MATH  Google Scholar 

  • Royds, J. A., S. K. Dower, E. E. Qwarnstrom and C. E. Lewis (1998). Responses of tumour cells to hypoxia: role of p53 and NFkB. J. Clin. Pathol.: Mol. Pathol. 51, 55–61.

    Article  Google Scholar 

  • Taraboletti, G., D. D. Roberts and L. A. Liotta (1987). Thrombospondin-induced cell migration: haptotaxis and chemotaxis are mediated by different molecular domains. J. Cell. Biol. 105, 2409–2415.

    Article  Google Scholar 

  • Ward, J. P. and J. R. King (1997). Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14, 39–69.

    MATH  Google Scholar 

  • Williams, W. (1980). Partial Differential Equations, Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Zigmond, S. H. (1978). Chemotaxis by polymorphonuclear leukocytes. J. Cell. Biol. 77, 269–289.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, K.E., Byrne, H.M. Modelling the internalization of labelled cells in tumour spheroids. Bull. Math. Biol. 61, 601–623 (1999). https://doi.org/10.1006/bulm.1999.0089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0089

Keywords

Navigation