Skip to main content

Advertisement

Log in

Threshold parameters and metapopulation persistence

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A method is presented to estimate the minimum viable metapopulation size based on the basic reproductive number R 0 and the expected time to extinction τ E for epidemiological models. We exemplify our approach with two simple deterministic metapopulation models of the patch occupancy type and then proceed to stochastic versions that permit the estimation of the minimum viable metapopulation size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.M. and R.M. May. (1991). Infectious Diseases of Humans, Oxford, Oxford Science Publications.

    Google Scholar 

  • Bailey, N.T.J. (1975). The Mathematical Theory of Infectious Diseases and its Applications, London, Charles Griffin.

    Google Scholar 

  • Diekman, O., J.A.P. Hesterbeek and J.A.J. Metz. (1990). On the definition and computation of the basic reproductive ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382

    MathSciNet  Google Scholar 

  • Goodman, D. (1987). The demography of chance extinctions, in Viable Populations for Conservation. M.E. Soulé, (ed.) pp. 11–43. New York, Cambridge University Press.

    Google Scholar 

  • Gyllenberg, M., I. Hanski and A. Hastings (1997). Structured metapopulation models. In Metapopulation Biology: Ecology, Genetics, and Evolution. I. Hanski, and M.E. Gilpin (eds), pp. 93–122. New York, Academic.

    Google Scholar 

  • Hanski, I (1989). Metapopulation dynamics: does it help to have more of the same? Trends Ecol. Evol. 4, 113–114.

    Article  Google Scholar 

  • Hanski, I (1991). Single-species metapopulation dynamics: concepts, models and observation. Biol. J. Linn. Soc. 42, 17–38.

    Google Scholar 

  • Hanski, I. and M. Gyllenberg (1993). Two general metapopulation models and the core-satellite species hypothesis. Am. Naturalist 142, 17–41.

    Article  Google Scholar 

  • Hanski, I., A. Moilanen and M. Gyllenberg (1996). Minimum viable metapopulation size. Am. Naturalist 147, 527–541.

    Article  Google Scholar 

  • Hernández-Suárez, C.M. (1997). Problems in the theory and application of models of infectious diseases. PhD Thesis, Biometrics Unit Cornell University.

  • Kareiva, P. and U. Wennergren (1995). Connecting landscape patterns to ecosystem and population processes. Nature, 373, 299–302.

    Article  Google Scholar 

  • Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Naturalist, 142, 911–927.

    Article  MathSciNet  Google Scholar 

  • Lawton, J.H., S. Nee, A.J. Letcher and P.H. Harvey (1994). Animal distributions: patterns and processes, in Large Scale Ecology and Conservation Biology, P.J. Edwards, R.M. May, and N.R. Webb (eds), pp. 41–58. Oxford, Blackwell Scientific.

    Google Scholar 

  • Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Amer., 15, 237–240.

    Google Scholar 

  • Levins, R. (1970). Extinction. Lectures on Mathematics in the Life Sciences 2. Providence, American Mathematical Society, RI.

    Google Scholar 

  • Marquet, P.A. and J.X. Velasco-Hernández (1997). A source-sink patch occupancy metapopulation model. Revista Chilena de Historia Natural, 70, 371–380.

    Google Scholar 

  • Nåsell, I. (1995). The threshold concept in deterministic and stochastic models, in Epidemic Models: their Structure and Relation to Data, D. Mollison (ed.), Cambridge, Cambridge University Press.

    Google Scholar 

  • Nee, S. (1994). How populations persist. Nature, 367, 123–124.

    Article  Google Scholar 

  • Nee, S. and R.M. May. (1992). Dynamics of metapopulations: habitat destruction and competitive coexistence. J. Animal Ecol. 61, 37–40.

    Google Scholar 

  • Nee, S., R.M. May and M.P. Hassell. (1997). Two-species metapopulation models. In Metapopulation Biology: Ecology, Genetics, and Evolution, I. Hanski and M.E. Gilpin (eds), pp. 123–147. New York, Academic.

    Google Scholar 

  • Nisbet, R. and W.S.C. Gurney (1982). Modeling Fluctuating Populations. Chichester, Wiley.

    Google Scholar 

  • Renshaw, E. (1991). Modeling Populations in Space and Time. Cambridge, Cambridge University Press.

    Google Scholar 

  • Richter-Dyn, N. and N.S. Goel (1972). On the extinction of a colonizing species. Theor. Pop. Biol. 3, 406–433.

    Article  Google Scholar 

  • Shaffer, M.L. (1981). Minimum population sizes for species conservation. BioScience, 31, 131–134.

    Article  Google Scholar 

  • Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2–16.

    Article  Google Scholar 

  • Wissel, C. and S. Stocker (1991). Extinction of populations by random influences. Theor. Pop. Biol. 39, 315–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge X. Velasco-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Suárez, C.M., Marquet, P.A. & Velasco-Hernández, J.X. Threshold parameters and metapopulation persistence. Bull. Math. Biol. 61, 341–353 (1999). https://doi.org/10.1006/bulm.1998.0084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1998.0084

Keywords

Navigation