Skip to main content
Log in

Velocity and stability of solitary planar travelling wave solutions of intracellular [Ca]2+

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Normal cardiac muscle contraction occurs in response to a rapid rise followed by a slower decay in intracellular calcium concentration. When cardiac muscle cells are loaded with calcium, an intracellular store releases calcium into the cytosol by the process of calcium-induced calcium release (CICR). This release contributes to the rise in intracellular calcium which in turn triggers contraction. We use two qualitative piecewise linear reaction-diffusion models of this behaviour to investigate the speed, stability and waveform of plane waves using singular perturbation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbritton, N., T. Meyer and L. Stryer (1992). Range of messenger action of calcium ion and inisotol trisphosphate. Science 258, 1812–1815.

    Google Scholar 

  • Amundson. J. and D. Clapham (1993). Calcium waves. Curr. Opin. Neurobiol. 3, 375–382.

    Article  Google Scholar 

  • Beeler, G. W. and H. Reuter (1977). Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. (Lond.) 268, 177–210.

    Google Scholar 

  • Berridge, M. J. (1989). Cell Signalling Through Cytoplasmic Calcium Oscillations in Cell to Cell Signalling: From Theory to Experiments, A. Goldbeter (Ed.), London: Academic Press.

    Google Scholar 

  • Bers, D. M. (1991). Excitation Contraction Coupling and Cardiac Contractile Force, London: Academic Press.

    Google Scholar 

  • Cheng, H., M. R. Lederer, R. P. Xiao, A. M. Gomez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta and W. J. Lederer (1996). Excitation-contraction coupling in heart—new insights from calcium sparks. Cell calcium 20, 129–140.

    Article  Google Scholar 

  • Chopra, G. C., B. D. Sleeman, A. V. Holden, J. Brindley and D. G. Knapp (1998). Derivation of eikonal approximation using singular perturbation techniques in models of calcium-induced calcium release. IMA J. Maths Applied in Medicine and Biology, submitted.

  • Cuthbertson, K. S. R. (1989). Intracellular Calcium Oscillations in Cell to Cell Signalling: From Theory to Experiments, A. Goldbeter (Ed), London: Academic Press.

    Google Scholar 

  • De Ferrari, G. M., M. Viol, and E. D’Amato (1995). Distinct patterns of calcium transients during early and delayed after depolarisations induced by isoproterenol in ventricular myocytes. Circulation 91, 2510–2515.

    Google Scholar 

  • Difrancesco, D. and D. Noble (1981). A model of cardiac electrical activity incorporating restricted extracellular spaces and the sodium-potassium pump. J. Physiol. (Lond.) 76, 25–26.

    Google Scholar 

  • Difrancesco, D. and D. Noble (1985). A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. R. Soc. 307, 353–398.

    Google Scholar 

  • Dupont, G. and A. Goldbeter (1994). Properties of intracellular calcium waves generated by a model based on calcium-induced-calcium-release. Biophys. J. 67, 2191–2204.

    Google Scholar 

  • Dupont, G. and A. Goldbeter (1996). Modelling spiral calciumwaves in single cardiac cells: role of the spatial heterogeneity created by the nucleus. Am. J. Physiol. 40, C1390–C1399.

    Google Scholar 

  • Fabiato, A. and F. Fabiato (1975). Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. (Lond.) 249, 469–495.

    Google Scholar 

  • Frampton, J. E., C. H. Orchard and M. R. Boyett (1991). Diastolic, systolic and sarcoplasmic reticulum calcium during inotropic interventions in isolated rat myocytes. J. Physiol. (Lond.) 437, 351–375.

    Google Scholar 

  • Goldbeter, A. (1996). Biochemical oscillations and cellular rhythms, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Golovina, V.A., L. V. Rozenshtraukh, B. S. Solo’ev and A. I. Chernaya (1986). Wavelike spontaneous contractions of isolated cardiomyocytes. Biophys. J. 31, 311–318.

    Google Scholar 

  • Hilgermann, D. W. and D. Noble (1987). Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc. R. Soc. 230, 163–205.

    Article  Google Scholar 

  • Kuba, K. and S. Takeshita (1981). Simulation of intracellular calcium oscillations in a sympathetic neurone. J. Theor. Biol. 93, 1009–1031.

    Article  Google Scholar 

  • Lechleiter, J. D. and D. E. Clapham (1992). Spiral waves and intracellular signalling. J. Physiol. (Lond.) 86, 123–128.

    Google Scholar 

  • Lipp, P. and M. D. Bootman (1997). To quark or to spark, that is the question. J. Physiol. (Lond.) 502, 1.

    Article  Google Scholar 

  • Lipp, P. and E. Niggli (1993). Microscopic spiral waves reveal positive feedback in subcellular calcium signalling. Biophys. J. 65, 2272–2276.

    Google Scholar 

  • Luo, C.-h. and Y. Rudy (1991). A model of the ventricular cardiac action potential. Circ. Res. 68, 1501–1526.

    Google Scholar 

  • Meyer, T. and L. Stryer (1991). Calcium spiking. Annu. Rev. Biophys, Biophys. Chem. 20, 153–174.

    Article  Google Scholar 

  • Noble, D., A. Varghese, P. Kohl and P. Noble (1998). Improved guinea-pig ventricular cell model incorporating a diadic space, i Kr and i Ks , and length-and tension-dependent processes. Can. J. Card. 14, 123–134.

    Google Scholar 

  • Orchard, C. H., M. R. Mustafa and E. White (1995). Oscillations and waves of intracellular calcium in cardiac muscle cells. Chaos, Solitons Fractals 5, 447–458.

    Article  MATH  Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1995). Numerical Recipes in C, Cambridge: Cambridge University Press.

    Google Scholar 

  • Rinzel, J. and B. Keller (1973). Travelling wave solutions of a nerve conduction equation. Biophys. J. 13, 1313–1337.

    Google Scholar 

  • Sneyd, J. and A. Atri (1993). Curvature dependence of a model for calcium wave propagation. Physica D65, 365–372.

    Google Scholar 

  • Sneyd, J., S. Girard and D. Clapham (1993). Calcium wave propagation by calcium induced calcium release:an unusual excitable system. Bull. Math. Biol. 55, 315–344.

    Article  MATH  Google Scholar 

  • Stern, M. D. (1992). Theory of ec coupling in cardiac muscle. Biophys. J. 71, 497–517.

    Article  Google Scholar 

  • Tsien, R. W. and R. Y. Tsien (1990). Calcium channels, stores, and oscillations. Annu. Rev. Cell Biology 6, 715–760.

    Article  Google Scholar 

  • Tyson, J. J. and J. P. Keener (1988). Singular perturbation theory of travelling waves in excitable media. Physica D32, 327–361.

    MathSciNet  Google Scholar 

  • Wier, W. G. (1990). Cytoplasmic calcium in mammalian ventricle:dynamical control by cellular processes. Annu. Rev. Physiol. 52, 467–485.

    Article  Google Scholar 

  • Wong, A. Y. K. (1981). A model of excitation-contraction coupling of mammalian cardiac muscle. J. Theor. Biol. 90, 37–61.

    Article  Google Scholar 

  • Wong, A. Y. K., A. Fabiato and J. B. Bassingthwaigthe (1992). Model of calcium-induced calcium release mechanism in cardiac cells. Bull. Math. Biol. 54, 95–116.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Chopra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, G.C., Sleeman, B.D., Brindley, J. et al. Velocity and stability of solitary planar travelling wave solutions of intracellular [Ca]2+ . Bull. Math. Biol. 61, 273–301 (1999). https://doi.org/10.1006/bulm.1998.0081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1998.0081

Keywords

Navigation