Skip to main content
Log in

A physical-biological coupled model for algal dynamics in lakes

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A coupled model is presented for simulating physical and biological dynamics in fresh water lakes. The physical model rests upon the assumption that the turbulent kinetic energy in a water column of the lake is fully contained in a mixed layer of variable depth. Below this layer the mechanical energy content is assumed to vanish. Additionally, the horizontal currents are ignored. This one-dimensional two-layered model describes the internal conversion of the mechanical and thermal energy input from the atmosphere into an evolution of the mixed layer depth by entrainment and detrainment mechanisms. It is supposed to form the physical domain in which the simulation of the biological processes takes place.

The biological model describes mathematically the typical properties of phyto-and zooplankton, their interactions and their response to the physical environment. This description then allows the study of the behaviour of Lagrangian clusters of virtual plankton that are subjected to such environments. The essence of the model is the dynamical simulation of an arbitrary number of nutrient limited phytoplankton species and one species of zooplankton. The members of the food web above and below affect the model only statically.

The model is able to reproduce the typical progression of a predator-prey interaction between phyto-and zooplankton as well as the exploitative competition for nutrients between two phytoplankton species under grazing pressure of Daphnia. It suggests that the influence of the biological system on the physical system results in a weak increase of the surface temperature for coupled simulations, but a considerably higher seasonal thermocline in spring and a lower one in autumn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barkmann, W. (1987). Der Einfluß der Wärmebilanz auf die Struktur der saisonalen Grenzschicht (The influence of the heat balance on the structure of the seasonal interface). Berichte des Instituts für Meereskunde 171, Universität Kiel.

  • Bührer, H. and H. Ambühl (1975). Die Einleitung von gereinigtem Abwasser in Seen. Schweiz. Z. Hydrol. 37, 347–369.

    Google Scholar 

  • Franks, P. J. S. (1995). Coupled physical-biological models in oceanography. Rev. Geoph. 33,Suppl. 1177–1187.

    Article  Google Scholar 

  • Franke, U. (1996). Physikalisch-biologische Kopplung zur Modellierung des Algenwachstums in Seen (A physical-biological coupling model for algal dynamics in lakes). Diplomarbeit, Technische Hochschule Darmstadt (Institute of Mechanics).

  • Gabriel, W. (1993). Models on diel vertical migration. Arch. Hydrobiol. Suppl. 39, 123–136.

    Google Scholar 

  • Gaedke, U., D. Ollinger, P. Kirner and E. Bäuerle (1998). The influence of weather conditions on the seasonal plankton development in a large and deep lake, parts II and III, in: Management of Lakes and Reservoirs During Global Climate Change, D. G. George (Ed.) pp. 71–84.

  • Güde, H. and T. Gries (in preparation). Phosphorus fluxes of Lake Constance, in Lake Constance, a Large and Deep Lake in Transition, E. Bäuerle and U. Gaedke (Eds), in preparation.

  • Haidvogel, D. B., J. L. Wilkin and R. Young (1991). A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comput. Phys. 94, 151–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Harris, G. P. (1978). Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Adv. Limnology 10.

  • Häse, C. (1996). Die Vorhersage der Produktivität des Phytoplanktons im Bodensee (Prediction of phytoplankton productivity in Lake Constance). Dissertation, Hartung-Gorre-Verlag Konstanz.

  • Heege, T. (1993). Modellierung der spektralen Lichtverhältnisse im Bodensee (Modeling the spectral light condition in Lake Constance). Diplomarbeit, Universität Konstanz.

  • Henderson-Sellers, B. (1984). Engineering Limnology, Boston, MA: Pitman.

    Google Scholar 

  • Hutter, K. (1993). Waves and oscillations in the ocean and in lakes, in Continuum mechanics in environmental sciences and geophysics, K. Hutter (Ed.), CISM Lecture Notes, Wien: Springer.

    Google Scholar 

  • Karagounis, I. (1992). Ein physikalisch-biochemisches Seemodell — Anwendung auf das Nordbecken des Luganersees. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 116.

  • Kirk, J. T. O. (1983). Light and Photosynthesis in Aquatic Ecosystems, Cambridge: Cambridge University Press.

    Google Scholar 

  • Kraus, E. B. and J. S. Turner (1967). A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus 19, 98–105.

    Google Scholar 

  • Lampert, W., U. Sommer and J. F. Haney (Trans.) (1997). Limnoecology: The Ecology of Lakes and Streams, Oxford: Oxford University Press.

    Google Scholar 

  • Liebermann, T. (1994). Physikalisch-biologische Kopplung im Bodensee (Physical-biological coupling in Lake Constance). Diplomarbeit, Technische Hochschule Darmstadt (Institute of Mechanics).

  • Martin, P. J. (1985). Simulation of the mixed layer at OWS November and Papa with several models. J. Geoph. Res. C90, 903–916.

    Article  Google Scholar 

  • Niiler, P. P. (1977). One-dimensional models of the seasonal thermocline, in The Sea, E. D. Goldberg (Ed.), pp. 97–115.

  • Peters, R. H. (1983). The Ecological Implications of Body Size, Cambridge: Cambridge University Press.

    Google Scholar 

  • Riley, M. J. and H. G. Stefan (1988). MINLAKE: A dynamical lakewater quality simulation model. Ecol. Model. 43, 155–182.

    Article  Google Scholar 

  • Schwoerbel, J. (1987). Handbook of Limnology, Chichester: Ellis Horwood.

    Google Scholar 

  • Schwoerbel, J. (1993). Einführung in die Limnologie, Stuttgart: Gustav Fischer, (7th edition).

    Google Scholar 

  • Sommer, U. (1994). Planktologie, New York: Springer.

    Google Scholar 

  • Straskraba, M. and A. Gnauck (1985). Freshwater Ecosystems: Modelling and Simulation, Amsterdam: Elsevier.

    Google Scholar 

  • Turner, J. S. and E. B. Kraus (1967). A one-dimensional model of the seasonal thermocline I. A laboratory experiment and its interpretation. Tellus 19, 88–97.

    Article  Google Scholar 

  • Wang, Y. (1996). Windgetriebene Strömungen in einem Rechteckbecken und im Bodensee (Wind-induced currents in a rectangular basin and in Lake Constance), Vol. I & II. Dissertation, Aachen: Shaker.

    Google Scholar 

  • Wang, Y. and K. Hutter (1998). A semi-implicit semi-spectral primitive equation model for lake circulation dynamics and its stability performance. J. Comput. Phys. 139, 209–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolf, K.-U. (1991). Meridionale variabilität des physikalischen und planktologischen Jahreszyklus (Meridional variability of the physical and planktological annual cycle). Berichte des Instituts für Meereskunde 203, Universität Kiel.

  • Woods, J. D. and W. Barkmann (1993). The plankton multiplier—positive feedback in the greenhouse. J. Plankton Res. 15, 1053–1074.

    Google Scholar 

  • Zamboni, F., A. Barbieri, B. Polli, G. Salvadè and M. Simona (1992). The dynamic model Seemod applied to the Southern Basin of Lake Lugano. Aquatic Sciences 54, 367–380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, U., Hutter, K. & Jöhnk, K. A physical-biological coupled model for algal dynamics in lakes. Bull. Math. Biol. 61, 239–272 (1999). https://doi.org/10.1006/bulm.1998.0075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1998.0075

Keywords

Navigation