Skip to main content
Log in

Distribution of attachment events relative to actin binding sites as evidenced in a bidirectional actomyosin interaction model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Optical trapping is one of the most evolving technologies that measures biophysical quantities and provides insights into some of the fundamental questions in the study of molecular motor proteins such as myosin. Several laboratories have successfully used this technique to observe and score nanometre-size displacements produced by myosin on interacting with actin. We have studied the distribution of attachment events for two myosin molecules with different orientations interacting with an actin filament within the framework of a Langevin-type bidirectional mathematical model. When myosin is detached from actin, our model predicts Brownian displacements centred at 0 ± 8 nm (mean ± SD, n = 251058). When attached, the time-averaged displacements of the actin filament system produced step sizes with peaks of 8 ± 6 nm (mean ± SD, n = 22174) (forward displacements) and −8 ± 6 nm (mean ± SD, n = 26769) (reverse displacements). We infer from our results that the population distribution of attachment events is strongly dependent on (i) the magnitude of the Brownian displacements, (ii) the location of the actin binding sites relative to the myosin molecules, (iii) the orientation of the myosin molcules, and (iv) the relative kinetics (rate constants) for the forward and reverse displacement events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentil, D. E., K. B. Acheampong, R. K. Wright and D. M. Warshaw (1997). Piconewton forces and nanometre steps: an assessment of experimental results for actomyosin interaction using Huxley kinetics. In Bio-Computing and Emergent Computation, Lundh, Olsson and Narayanan (Eds), London: World Scientific Press, pp. 228–237.

    Google Scholar 

  • Bentil, D. E. (1998a). Modeling and simulation of motility in actomyosin systems. J. Comp. Biol. 5, 73–86.

    Article  Google Scholar 

  • Bentil, D. E. (1998b). How Brownian displacement goes down during actin-myosin interaction in the laser trap. Math. Comp. Modelling. (in press).

  • Berg, H. C. (1983). Random Walks in Biology, New Jersey: Princeton University Press.

    Google Scholar 

  • Brokaw, C. J. (1976). Computer simulation of movement-generating cross-bridges. Biophys. J. 16, 1013–1027

    Google Scholar 

  • Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. Mod Phys. 15, 1–89.

    Article  MATH  MathSciNet  Google Scholar 

  • Córdova, N. J., B. Ermentrout and G. F. Oster (1992). Dynamics of single-motor molecules: the thermal ratchet model. Proc. Natl. Acad. Sci. USA 89, 339–343.

    Article  Google Scholar 

  • Dupuis, D. E., W. H. Guilford, J. Wu and D. M. Warshaw (1997). Actin filament mechanics in the laser trap. J. Musl. Res. Cell Mot. 18, 17–30.

    Article  Google Scholar 

  • Finer, J., R. M. Simmons and J. A. Spudich (1994). Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–118.

    Article  Google Scholar 

  • Finer, J. T., A. D. Mehta and J. A. Spudich (1995). Characterization of single actin-myosin interactions. Biophys. J. 68, 291s–297s.

    Google Scholar 

  • Guilford, W. H., D. E. Dupuis, G. Kennedy, J. Wu, J. B. Patlak and D. M. Warshaw (1997). Smooth-muscle and skeletal-muscle myosins produce similar unitary forces and displacements in laser trap. Biophys. J. 72, 1006–1021.

    Google Scholar 

  • Hill, T. L. (1974). Theoretical formalism for the sliding filament model of contraction of striated muscle. Prog. Biophys. Mol. Biol. 28, 267–340.

    Article  Google Scholar 

  • Huxley, A. F. (1957). Muscle Structure and theories of contraction. Prog. Biophys. 7, 255–318.

    Google Scholar 

  • Ishijima, A., T. Doi, K. Sakurada and T. Yanagida (1991). Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352, 301–306.

    Article  Google Scholar 

  • Ishijima, A., Y. Harada, H. Kojima, T. Funatsu, H. Higuchi and T. Yanagida (1994). Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Comm. 199, 1057–1063.

    Article  Google Scholar 

  • Miyata, H., H. Hakozaki, H. Yoshikawa, N. Suzuki, K. Kinosita Jr., T. Nishizaka and S. Ishiwata (1994). Stepwise motion of an actin filament over a small number of heavy meromyosin molecules is revealed in an in vitro motility assay. J. Biochem. 155, 644–647.

    Google Scholar 

  • Molloy, J. E., J. E. Burns, J. Kendrick-Jones, R. T. Tregear and D. C. White (1995a). Movement and force produced by a single myosin head. Nature 378, 209–212.

    Article  Google Scholar 

  • Molloy, J. E., J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones and C. S. White (1995b). Single-molecule mechanics of heavy meromyosin and s1 interacting with rabbit or drosophila actin using optical tweezers. Biophys. J. 68, 298s–350s.

    Google Scholar 

  • Molloy, J. E. and C. S. White (1997). Smooth and skeletal muscle single-molecule mechanical experiments. Biophys. J. 72, 984–986.

    Google Scholar 

  • Purcell, E. M. (1977). Life at low Reynolds number. Am. J. Phys. 45, 3–11.

    Article  Google Scholar 

  • Reedy, M. K., K. C. Holmes and R. T. Tregear (1965). Induced changes in orientation of the crossbridges of glycerinated insect flight muscle. Nature 207, 1276–1280.

    Google Scholar 

  • Reedy, M. K. (1967). Crossbridges and periods in insect flight muscle. Am. Zool. 7, 465–481.

    Google Scholar 

  • Riskin, H. (1989). The Fokker-Plank Equation, New York: Springer.

    Google Scholar 

  • Schneider, T. and E. Stoll (1978). Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322.

    Article  Google Scholar 

  • Sellers, J. R. and B. Kachar (1990). Polarity and velocity of sliding filaments: control of direction by actin and of speed by myosin. Science 249, 406–408.

    Google Scholar 

  • Sheetz, M. P. and J. A. Spudich (1983). Movement of myosini-coated fluorescent beads on actin cables in vitro. Nature 303, 31–35.

    Article  Google Scholar 

  • Svoboda, K. and S. M. Block (1994). Biological applications of optical forces. Ann. Rev. Biophys. Biomol. Struct. 23, 247–285.

    Article  Google Scholar 

  • Svoboda, K., C. F. Schmidt, B. J. Schnapp and S. M. Block (1993). Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727.

    Article  Google Scholar 

  • Toyoshima, Y. Y., C. Toyoshima and J. A. Spudich (1989). Bidirectional movement of actin filaments along tracks of myosin heads. Nature 341, 154–156.

    Article  Google Scholar 

  • VanBuren, P., S. S. Work and D. M. Warshaw (1994). Enhanced force generation by smooth muscle myosin in vitro. Proc. Natl. Acad. Sci. USA 91, 202–205.

    Article  Google Scholar 

  • Yamada, A., N. Ishii and K. Takahashi (1990). Direction and speed of actin filaments moving along thick filaments isolated from molluscan smooth muscle. J. Biochem. 108, 341–343.

    Google Scholar 

  • Yamada, A. and K. Takahashi (1992). Sudden increase in speed of an actin filament moving on myosin crossbridges of “mismatched” polarity observed when its leading end begins to interact with crossbridges of matched polarity. J. Biochem. 111, 676–680.

    Google Scholar 

  • Yamada, A. and T. Wakabayashi (1993). Movement of actin away from the center of reconstituted rabbit myosin filament is slower than in the opposite direction. Biophys. J. 64, 565–569.

    Article  Google Scholar 

  • Yanagida, T., M. Nakase, K. Nishiyama and F. Oosawa (1984). Direct observation of single F-actin filaments in the presence of myosin. Nature 307, 58–60.

    Article  Google Scholar 

  • Warshaw, D. M. (1996). The in vitro motility assay: a window into the myosin molecular motor. News Physiol. Sc. 11, 1–7.

    Google Scholar 

  • West, J. M., H. Higuchi, A. Ishijima and T. Yanagida (1996). Modification of the bi-directional sliding movement of actin filaments along native thick filaments isolated from a clam. J. Musl. Res. Cell Mot. 17, 637–646.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentil, D.E. Distribution of attachment events relative to actin binding sites as evidenced in a bidirectional actomyosin interaction model. Bull. Math. Biol. 60, 973–995 (1998). https://doi.org/10.1006/bulm.1998.0055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1998.0055

Keywords

Navigation