Skip to main content
Log in

A non-stochastic approach for modeling uncertainty in population dynamics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We developed a non-stochastic methodology to deal with the uncertainty in models of population dynamics. This approach assumed that noise is bounded; it led to models based on differential inclusions rather than stochastic processes, and avoided stochastic calculus. Examples of estimations of extinction times for exponential and logistic population growth with environmental and demographic noise are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubin, J.-P. (1990). Fuzzy differential inclusions. Probl. Cont. Inform. Theory 19, 55–67.

    MATH  MathSciNet  Google Scholar 

  • Aubin, J.-P. (1991). Viability Theory, Boston: Birkhauser.

    Google Scholar 

  • Aubin, J.-P. and A. Cellina (1984). Differential Inclusions, Berlin: Springer-Verlag.

    Google Scholar 

  • Başar, T. and P. Bernhard (1991). H -Optimal Control and Related Minimax Design Problems. A Dynamic Game Approach, Boston: Birkhauser.

    Google Scholar 

  • Bardi, M. and I. Capuzzo Dolcetta (1997). Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Belmann Equations, Boston: Birkhauser.

    Google Scholar 

  • Braumann, C. A. (1983). Population growth in random environments. Bull. Math. Biol. 45, 635–641.

    Article  MATH  Google Scholar 

  • Bressan, A. (1990). The most likely path of a differential inclusion. J. Diff. Equ. 88, 155–174.

    Article  MATH  MathSciNet  Google Scholar 

  • Brockwell, P. J. (1985). The extinction time of a birth, death and catastrophe process and of a related diffusion model. Adv. Appl. Prob. 17, 42–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Cellina, A. and R. M. Colombo (1990). Some qualitative and quantitative results on a differential inclusion. Rend. Sem. Mat. Univ. Pol. Torino 48, 105–124.

    MathSciNet  Google Scholar 

  • Cesari, L. (1983). Optimization-Theory and Applications, Berlin: Springer.

    Google Scholar 

  • Chesson, P. (1994). Multispecies competition in variable environments. Theor. Pop. Biol. 45, 227–276.

    Article  MATH  Google Scholar 

  • Colombo, G. and V. Křivan (1992). Fuzzy differential inclusions and nonprobablistic likelihood. Dynam. Syst. Appl. 1, 419–440.

    Google Scholar 

  • Deimling, K. (1992). Differential Inclusions on Closed Sets, Basel: DeGruyter.

    Google Scholar 

  • Dennis, B., P. Munholland and J. M. Scott (1991). Estimation of growth and extinction parameters for endangered species. Ecol. Monog. 6, 115–143.

    Article  Google Scholar 

  • Fleming, W. H. and R. W. Rishel (1975). Deterministic and Stochastic Optimal Control, Berlin: Springer.

    Google Scholar 

  • Foley, P. (1994). Predicting extinction times from environmental stochasticity and carrying capacity. Conserv. Biol. 8, 124–137.

    Article  Google Scholar 

  • Gillespie, J. H. (1989). When not to use diffusion processes in population genetics, in Mathematical Evolutionary Theory, M. W. Feldman, (Ed.), Princeton: Princeton University Press, pp. 57–70.

    Google Scholar 

  • Grasman, J. (1996). The expected extinction time of a population within a system of interacting biological populations. Bull. Math. Biol. 58, 555–568.

    Article  MATH  Google Scholar 

  • Halley, J. M. (1996). Ecology, evolution and 1/f-noise. TREE 11, 33–37.

    Google Scholar 

  • Keiding, N. (1975). Extinction and exponential growth in random environments. Theoret. Pop. Biol. 8, 49–63.

    Article  MATH  Google Scholar 

  • Křivan, V. and J. Seďa (1989). Application of a guaranteed regression model to trophic interaction in an aquatic system. Ecol. Model. 49, 1–6.

    Article  Google Scholar 

  • Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Amer. Nat. 142, 911–927.

    Article  MathSciNet  Google Scholar 

  • Mace, G. M. and R. Lande (1991). Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv. Biol. 5, 148–157.

    Article  Google Scholar 

  • Mangel, M. and C. Tier (1993). Dynamics of metapopulations with demographic stochasticity and environmental catstrophes. Theoret. Pop. Biol. 44, 1–31.

    Article  Google Scholar 

  • Nisbet, R. M. and W. S. C. Gurney (1982). Modelling Fluctuating Populations, Chichester: Wiley.

    Google Scholar 

  • Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models, Berlin: Springer.

    Google Scholar 

  • Pakes, A. G., A. C. Trajstman and P. J. Brockwell (1979). A stochastic model for a replicating population subjected to mass emigration due to population pressure. Math. Biosc. 45, 137–157.

    Article  MathSciNet  Google Scholar 

  • Pielou, E. C. (1977). Mathematical Ecology, Chichester: Wiley.

    Google Scholar 

  • Ricciardi, L. M. (1977). Diffusion Processes and Related Topics in Biology, Berlin: Springer.

    Google Scholar 

  • Roughgarden, J. (1979). Theory of Population Genetics and Evolutionary Ecology: An Introduction, New York: Macmillan Publishing Co.

    Google Scholar 

  • Steele, J. H. (1985). A comparison of terrestrial and marine ecological systems. Nature 313, 355–358.

    Article  Google Scholar 

  • Turelli, M. (1977). Random environments and stochastic calculus. Theoret. Pop. Biol. 12, 140–178.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Z. and G. J. Klir 1992. Fuzzy Measure Theory, New York,: Plenum.

    Google Scholar 

  • Whittle, P. (1990). Risk-Sensitive Optimal Control, Chichester: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Křivan, V., Colombo, G. A non-stochastic approach for modeling uncertainty in population dynamics. Bull. Math. Biol. 60, 721–751 (1998). https://doi.org/10.1006/bulm.1998.0040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1998.0040

Keywords

Navigation