Skip to main content
Log in

Emergence of rules in cell society: Differentiation, hierarchy, and stability

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A dynamic model for cell differentiation, where cells with internal chemical reaction dynamics interact with each other and replicate was studied. It led to spontaneous differentiation of cells and determination, as discussed in the isologous diversification. The following features of the differentiation were obtained: (1) hierarchical differentiation from a ’stem’ cell to other cell types, with the emergence of the interaction-dependent rules for differentiation; (2) global stability of an ensemble of cells consisting of several cell types, that were sustained by the emergent, autonomous control on the rate of differentiation; (3) existence of several cell colonies with different cell-type distributions. The results provide a novel viewpoint on the origin of a complex cell society, while relevance to some biological problems, especially to the hemopoietic system, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson (1983, 1989, 1994). The Molecular Biology of the Cell, New York: Garland.

    Google Scholar 

  • Bignone, F. J. (1993). Cells-gene interaction simulation on a coupled map lattice. J. Theor. Biol. 161, 231.

    Article  Google Scholar 

  • Delbrück, M. Discussion in: Unités Biologiques Douées de Continuité Génétique Editions du CNRS (Lyon) 33.

  • Eigen, M. and P. Schuster (1979). The Hypercycle: A Principle of Natural Self-Organization, Berlin: Springer-Verlag.

    Google Scholar 

  • Fankhauser, G. (1955). In Analysis of Development, B. H. Willier et al. (Eds), Philadelphia, PA: Saunders, pp. 126–150.

    Google Scholar 

  • Goodwin, B. (1963). Temporal Organization in Cells, London: Academic Press.

    Google Scholar 

  • Goodwin, B. (1982). Development and evolution. J. Theor. Biol. 97, 43.

    Article  Google Scholar 

  • Hess, B. and A. Boiteux (1971). Oscillatory phenomena in biochemistry. Ann. Rev. Biochem. 40, 237.

    Article  Google Scholar 

  • Gordon, R., N. K. Bjoklund and P. D. Nieuwkoop (1994). Dialog on embryonic induction and differentiation waves. Int. Rev. Cytol. 150, 373.

    Article  Google Scholar 

  • Kaneko, K. (1990). Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements. Physica 41D, 137.

    MathSciNet  Google Scholar 

  • Kaneko, K. (1991). Globally coupled circle maps. Physica 54D, 5.

    MathSciNet  Google Scholar 

  • Kaneko, K. (1992). Mean field fluctuation in network of chaotic elements. Physica 55D, 368.

    MathSciNet  Google Scholar 

  • Kaneko, K. and T. Yomo (1994). Cell division, differentiation, and dynamic clustering. Physica 75D, 89.

    Google Scholar 

  • Kaneko, K. and T. Yomo (1995). A theory of differentiation with dynamic clustering, in Advances in Artificial Life, F. Moran et al. (Eds), Springer, pp. 329–340.

  • Kaneko, K. and T. Yomo (1997). Isologous diversification: a theory of cell differentiation. Bull. Math. Biol. 59, 139.

    Article  MATH  Google Scholar 

  • Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437.

    Article  MathSciNet  Google Scholar 

  • Mjolsness, E., D. H. Sharp and J. Reinitz (1991). A connectionist model of development. J. Theor. Biol. 152, 429.

    Article  Google Scholar 

  • Nakahata, T., A. J. Gross and M. Ogawa (1982). A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J. Cell. Phys. 113, 455.

    Article  Google Scholar 

  • Newman, S. A. and W. D. Comper (1990). Generic physical mechanisms of morphogenesis and pattern formation. Development 110, 1.

    Google Scholar 

  • Novick, A. and M. Weiner (1957). Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. USA. 43, 553.

    Article  Google Scholar 

  • Ogawa, M. (1993). Differentiation and proliferation of hematopoietic stem cell. Blood 81, 2844.

    Google Scholar 

  • Schofield, R., S. Load, S. Kyffin and C. M. Glibert (1980). Self-maintenance capacity of CFU-S. J. Cell. Phys. 103, 355.

    Article  Google Scholar 

  • Sonneborn, T. M. (1964). The differentiation of cell. Proc. Natl. Acad. Sci. USA. 51, 915.

    Article  Google Scholar 

  • Till, J. E., E. A. McCulloch and L. Siminovitch (1964). A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cell. Proc. Natl. Acad. Sci. USA 51, 29.

    Article  Google Scholar 

  • Thomas, R., D. Thieffry and M. Kaufman (1995). Dynamical behavior of biological regulation networks. Bull. Math. Biol. 57, 247.

    Article  MATH  Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. 237, 5.

    Google Scholar 

  • Tyson, J. J. et al. (1996). Chemical kinetic theory understanding cell-cycle regulation. TIBS 21, 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furusawa, C., Kaneko, K. Emergence of rules in cell society: Differentiation, hierarchy, and stability. Bull. Math. Biol. 60, 659–687 (1998). https://doi.org/10.1006/bulm.1997.0034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1997.0034

Keywords

Navigation