Skip to main content
Log in

Modelling the metabolic versatility of a microbial trichome

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A microbial trichome extracts nutrients from its immediate surroundings. It may also oxidize electron donors, reduce electron acceptors, and exude the ‘waste’ products of endogenous redox metabolism. Finally, it may effect light harvesting. These exchange fluxes are summed up in a generic model, which covers photoautotrophs as well as chemoheterotrophs. The focus is on endogenous metabolism and the cellular homeostasis of both reducing and phosphorylating equivalents. A novel result is the formulation of four ‘rules’, akin to the Pasteur effect, which govern the compatibility of endogenous metabolism with various assimilatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkin, A. and J. Ross (1994). Computational functions in biochemical reaction networks. Biophys. J. 67, 560–578.

    Article  Google Scholar 

  • Brock, T. D., M. T. Madigan, J. M. Martinko and J. Parker (1994). Biology of Microorganisms, 7th edn., New Jersey: Prentice-Hall.

    Google Scholar 

  • Canfield, D. E. and D. J. Des Marais (1994). Cycling of carbon, sulfur, oxygen and nutrients in a microbial mat. In Microbial Mats. Structure, Development and Environmental Significance, L. J. Stal and P. Caumette (eds.), NATO ASI Series G, vol. 35, pp. 255–263. Heidelberg: Springer-Verlag.

    Google Scholar 

  • De Wit, R., F. P. Van den Ende and H. Van Gemerden (1995). Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiol. Ecol. 17, 117–136.

    Google Scholar 

  • De Zwart, J. M. M. and J. G. Kuenen (1995). Compartment model for biological converions of DMS in a microbial mat: Effect of pH on DMS fluxes. FEMS Microbiol. Ecol. 18, 247–255.

    Google Scholar 

  • Jørgensen, B. B. (1994). Diffusion processes and boundary layers in microbial mats. In Microbial Mats. Structure, Development and Environmental Significance, L. J. Stal and P. Caumette (eds.), NATO ASI Series G, vol. 35, pp. 243–253. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Jørgensen, B. B., N. P. Revsbech and Y. Cohen (1983). Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr. 28, 1075–1093.

    Article  Google Scholar 

  • Kompala, D. S., D. Ramkrishna and G. T. Tsao (1984). Cybernetic modeling of microbial growth on multiple substrates. Biotechnol. Bioeng. 26, 1272–1281.

    Article  Google Scholar 

  • Kooijman, S. A. L. M. (1993). Dynamic Energy Budgets in Biological Systems. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Lovelock, J. E. (1986). Geophysiology: A new look at earth science. Bull. Amer. Meteorol. Soc. 67, 392–397.

    Google Scholar 

  • Michels, P. A. M., J. P. J. Michels, J. Boonstra and W. N. Konings (1979). Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol. Lett. 5.

  • Monod, J. (1942). Recherches sur la croissance des cultures bactériennes, PhD thesis.

  • Nicholls, D. G. and S. J. Ferguson (1992). Bioenergetics 2. New York: Academic Press.

    Google Scholar 

  • Pavlou, S. and A. G. Fredrickson (1989). Growth of microbial populations in nonminimal media: Some considerations for modeling. Biotechnol. Bioeng. 34, 971–989.

    Article  Google Scholar 

  • Ramakrishna, R., D. Ramkrishna and A. E. Konopka (1997). Microbial growth on substitutable substrates: Characterizing the consumer-resource relationship. Biotechnol. Bioeng. 54, 77–90.

    Article  Google Scholar 

  • Schaub, B. E. M. and H. Van Gemerden (1994). Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina M1. FEMS Microbiology Ecology 13, 185–196.

    Google Scholar 

  • Schlegel, H. G. (1986). General Microbiology, 6th edn., Cambirdge: Cambridge University Press. (translated by Margot Kogut).

    Google Scholar 

  • Stal, L. J. (1991). The metabolic versatility of the mat-building cyanobacteria Microcoleus chtonoplastes and Oscillatoria limosa and its ecological significance. Algol. Stud. 64, 453–467.

    Google Scholar 

  • Stal, L. J. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 131, 1–32.

    Article  Google Scholar 

  • Stal, L. J., H. Van Gemerden and W. E. Krumbein (1985). Structure and development of a benthic marine microbial mat. FEMS Microbiol. Ecol. 31, 111–125.

    Google Scholar 

  • Straight, J. V. and D. Ramkrishna (1994). Cybernetic modeling and regulation of metabolic pathways. Growth on complementary nutrients. Biotechnol. Prog. 10, 574–587.

    Article  Google Scholar 

  • Van den Ende, F. P. and H. Van Gemerden (1994). Relationships between functional groups of organisms in microbial mats. In Microbial Mats. Structure, Development and Environmental Significance, L. J. Stal and P. Caumette (eds.), NATO ASI Series G, vol. 35, pp. 339–352. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Van Gemerden, H. (1993). Microbial mats: A joint venture. Marine Geology 113, 3–25.

    Article  Google Scholar 

  • Visscher, P. T. and F. P. Van den Ende (1994). Diel and spatial fluctuations of sulfur transformations. In Microbial Mats. Structure, Development and Environmental Significance, L. J. Stal and P. Caumette (Eds.), NATO ASI Series G, vol. 35, pp. 353–359. Heidelberg: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, H.A. Modelling the metabolic versatility of a microbial trichome. Bull. Math. Biol. 60, 131–150 (1998). https://doi.org/10.1006/bulm.1997.0026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1997.0026

Keywords

Navigation