Skip to main content

Advertisement

Log in

Optimal harvesting for a predator-prey metapopulation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we present a deterministic, discrete-time model for a two-patch predator-prey metapopulation. We study optimal harvesting for the metapopulation using dynamic programming. Some rules are established as generalizations of rules for a single-species metapopulation harvesting theory. We also establish rules to harvest relatively more (or less) vulnerable prey subpopulations and more (or less) efficient predator subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, G. and J. Roughgarden (1997). A metapopulation model with private property and a common pool. Ecol. Econ. 22, 65–71.

    Article  Google Scholar 

  • Brown, L. D. and N. D. Murray (1992). Population genetics, gene flow, and stock structure in Haliotis rubra and Haliotis laevigata. In Abalone of the World: Biology, Fisheries and Culture, S. A. Shepherd et al. (Eds), pp. 24–33, Oxford: Fishing News Books.

    Google Scholar 

  • Clark, C. W. (1976). Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 1st edn, New York: Wiley.

    Google Scholar 

  • Clark, C. W. (1984). Strategies for multispecies management: objectives and constrains, in Exploitation of Marine Communities, R. M. May (Ed.), pp. 303–312, Berlin: Springer.

    Google Scholar 

  • Frank, K. T. (1992). Demographic consequences of age-specific dispersal in marine fish populations. Can. J. Fish. Aquat. Sci. 49, 2222–2231.

    Google Scholar 

  • Frank, K. T. and W. C. Leggett (1994). Fisheries ecology in the context of ecological and evolutionary theory. Annu. Rev. Ecol. Syst. 25, 401–422.

    Article  Google Scholar 

  • Gordon, H. S. (1954). The economic theory of a common-property resource: the fishery. J. Polit. Econ. 62, 124–142.

    Article  Google Scholar 

  • Hilborn, R. and C. J. Walters (1987). A general model for simulation of stock and fleet dynamics in spatially heterogeneous fisheries. Can. J. Fish. Aquat. Sci. 44, 1366–1369.

    Google Scholar 

  • Horwood, J. W. (1990). Near-optimal rewards from multiple species harvested by several fishing fleets. IMA J. Math. Appl. Med. Biol. 7, 55–68.

    MATH  Google Scholar 

  • Leung, A. W. (1995). Optimal harvesting-coefficient control of steady-state prey-predator diffusive Volterra-Lotka system. App. Math. Optim. 31, 219–241.

    Article  MATH  Google Scholar 

  • Munro, G. R. (1992). Mathematical bioeconomics and the evolution of modern fisheries economics. Bull. Math. Biol. 54, 163–184.

    Article  Google Scholar 

  • Murphy, E. J. (1995). Spatial structure of the Southern Ocean ecosystem: predator-prey linkages in Southern Ocean food webs. J. Anim. Ecol. 64, 333–347.

    Google Scholar 

  • Prince, J. D. (1992). Using a spatial model to explore the dynamics of an exploited stock of the abalone Haliotis rubra. In Abalone of the World: Biology, Fisheries and Culture, S. A. Shepherd et al. (Eds), pp. 305–317. Oxford: Fishing News Books.

    Google Scholar 

  • Prince, J. D, T. L. Sellers, W. B. Ford and S. R. Talbot (1987). Experimental evidence for limited dispersal of haliotid larvae (genus Haliotis; Mollusca: Gastropoda). J. Exp. Mar. Biol. Ecol. 106, 243–264.

    Article  Google Scholar 

  • Pulliam, H. R. (1988). Source, sink, and population regulation. Am. Nat. 132, 652–661.

    Article  Google Scholar 

  • Shepherd, S. A. and L. N. Brown (1993). What is abalone? Implications for role of refugia in conservation. Can. J. Fish. Aquat. Sci. 50, 20001–20009.

    Google Scholar 

  • Sinclair, M. (1988). Marine populations: An Essay on Population Regulation and Speciation. Seattle: Univ. Wash. Press.

    Google Scholar 

  • Tuck, G. N. and H. P. Possingham (1994). Optimal harvesting strategies for a metapopulation. Bull. Math. Biol. 56, 107–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supriatna, A.K., Possingham, H.P. Optimal harvesting for a predator-prey metapopulation. Bull. Math. Biol. 60, 49–65 (1998). https://doi.org/10.1006/bulm.1997.0005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1997.0005

Keywords

Navigation