Skip to main content
  • 1270 Accesses

Abstract

This chapter is the last of the three-lecture series on the physical processes that are accounted for in numerical models of tropical cyclones. There are two sections in this chapter. Section 1 is intended to provide an overview of the physical processes required to be included in TC models near the air-sea interface under tropical cyclones, and Section 2 presents results from a recent study on the sensitivity of simulated TC intensification to parameterized physical processes. Materials presented in Section 1 are derived from an overview book chapter by Bao et al. (2002), while those presented in Section 2 are based on Bao et al. (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, C.E. and G.L. Wetherly, 1981: Some Effect of Suspended Sediment Stratification on an Oceanic Bottom Boundary Layer. J. Geophys. Res., 86, 4161-4172.

    Article  Google Scholar 

  • Andreas, E.L., 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 1429-1440.

    Article  Google Scholar 

  • Andreas, E.L., 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52, 852-862.

    Article  Google Scholar 

  • Andreas, E.L., 1990: Time constants for the evolution of sea spray droplets. Tellus, 42B, 481-497.

    Article  Google Scholar 

  • Andreas, E.L. and K.A. Emanuel, 2001: Effect of sea spray on tropical cyclones intensity. J. Atmos. Sci., 58, 3741-3751.

    Article  Google Scholar 

  • Andreas, E.L., J.B. Edson, E.C. Monahan, M.P. Rouault and S.D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Boundary-Layer Meteorology., 72, 3-52.

    Article  Google Scholar 

  • Bao, J.-W., C.W. Fairall, S.A. Michelson and L. Bianco, 2011: Parameterizations of Sea-Spray Impact on the Air-Sea Momentum and Heat Fluxes. Mon. Wea. Rev., 139, 3781-3797.

    Article  Google Scholar 

  • Bao, J.-W., J.M. Wilczak, J.K. Choi and L.H. Kantha, 2000: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190-2210.

    Article  Google Scholar 

  • Bao, J.-W., S.A. Michelson, J.M. Wilczak and C.W. Fairall, 2002: Test of parameterizations of air-sea energy fluxes in a regional coupled atmosphere-ocean modeling system under high wind conditions. In: Atmosphere-Ocean Interactions, Advances in Fluid Mechanics. W. Perrie (ed.). WIT Press, Boston, pp. 115-153.

    Google Scholar 

  • Barenblatt, G.I., 1996: Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge Univ. Press, Cambridge, U.K.

    Book  Google Scholar 

  • Barnes, G.M., 2008: Atypical thermodynamic profiles in hurricanes. Mon. Wea. Rev., 136, 631-643.

    Article  Google Scholar 

  • Barnes, G.M. and M.D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 2348-2368.

    Article  Google Scholar 

  • Bianco, L., J.-W. Bao, C.W Fairall and S.A. Michelson, 2011: Impact of sea spray on the surface boundary. Boundar.-Layer Meteorol., accepted.

    Google Scholar 

  • Black, P.G. et al., 2007: Air-Sea Exchange in Hurricanes: Synthesis of Observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bulletin of American Meteorological Society, 88, 357-374.

    Article  Google Scholar 

  • Brutsaert, W., 1982: Evaporation into the Atmosphere. D. Reidel.

    Google Scholar 

  • Brutsaert, W., 1979: Heat and mass transfer to and from surfaces with dense vegetation or similar permeable roughness. Boundary-Layer Meteorology, 16, 365-388.

    Article  Google Scholar 

  • Brutsaert, W. and M. Sugita, 1996: Sensible heat transfer parameterization for surfaces with anisothermal dense vegetation. J. of Atmo. Sci., 53, 209-216.

    Article  Google Scholar 

  • Cione, J.J., P.G. Blasck and S.H. Houston, 2000: Surface Observation in hurricane environment. Mon. Wea. Rev., 128, 1550-1561.

    Article  Google Scholar 

  • DeCosmo, J., K. Katsaros, S.D. Smith, R.J. Anderson, W.A. Oost, K. Bumke and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The humidity exchange coefficient over the sea (HEXOS) results. J. of Geophys. Res., 101, 12001-12016.

    Article  Google Scholar 

  • Donelan, M.A., 1990: Air Sea Interaction. In: The Sea: Ocean Engineering Science (Volume 9). E.D. Goldberg et al. (eds). Wiley-Interscience, 239-292.

    Google Scholar 

  • Drennan, William M., Jun A. Zhang, Jeffrey R. French, Cyril McCormick and Peter G. Black, 2007: Turbulent Fluxes in the Hurricane Boundary Layer. Part II: Latent Heat Flux. J. Atmos. Sci., 64, 1103-1115.

    Article  Google Scholar 

  • Emanuel, K.A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.

    Article  Google Scholar 

  • Fairall, C.W., J.E. Hare, A.A. Grachev, E.F. Bradley and J.B. Edson, 2001: Preliminary results from the ETL open ocean air-sea flux database. 11th Conference on Interaction of the Sea and Atmosphere. American Meteorological Society, San Diego, California.

    Google Scholar 

  • Fairall, C.W., J.D. Kepert and G.J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121-142.

    Google Scholar 

  • Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson and G.S. Young, 1996: Bulk parameterization of air-sea fluxes for TOGA COARE. J. Geophys. Res., 101, 3747-3764.

    Article  Google Scholar 

  • Fairall, C.W., M.L. Banner, W.L. Peirson, W. Asher, and R.P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi: 10.1029/2008JC004918.

    Article  Google Scholar 

  • French, Jeffrey R., William M. Drennan, Jun A. Zhang and Peter G. Black, 2007: Turbulent Fluxes in the Hurricane Boundary Layer. Part I: Momentum Flux. J. Atmos. Sci., 64, 1089-1102.

    Article  Google Scholar 

  • Garratt, J.R., 1992: The atmospheric boundary layer. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gill, A.E., 1982: Atmospheric-Ocean Dynamics. Academic Press.

    Google Scholar 

  • Gray, W.M., E. Ruprecht and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103, 685-690.

    Article  Google Scholar 

  • Houze, R.A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293-344.

    Article  Google Scholar 

  • Jarosz, E., D.A. Mitchell, D.W. Wang and W.J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 1707-1709.

    Article  Google Scholar 

  • Janssen, P.A.E.M., 1991: The quasi-linear theory of wind wave generation applied to wave forecasting. J. of Phys. Oceanogr., 21, 1631-1642.

    Article  Google Scholar 

  • Kader, B.A. and A.M. Yaglom, 1972: Heat and mass transfer loss for fully turbulent wall flows. International Journal of Heat and Mass Transfer, 15, 2329-2351.

    Article  Google Scholar 

  • Kepert, J.D., C.W. Fairall and J.-W. Bao, 1999: Modeling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. In: Air-Sea Exchange: Physics, Chemistry and Dynamics. G.L. Geernaer (ed.). Kluwer. 363-407.

    Google Scholar 

  • Kraus, E.B. and J.A. Businger, 1994: Atmosphere-Ocean Interaction. Oxford University Press.

    Google Scholar 

  • Large, W.G. and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. of Phys. Oceanogr., 12, 464-482.

    Article  Google Scholar 

  • Lykossov, V., 2001: Atmospheric and oceanic boundary layer physics. In: Wind stress over the Ocean, I.S.F. Jones and Y. Toba (eds). Cambridge University Press, 58-81.

    Google Scholar 

  • Makin, V.K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteorol., 115, 169-176.

    Article  Google Scholar 

  • Makin, V.K. and C. Mastenbroek, 1996: Impact of waves on air-sea exchange of sensible heat and momentum. Boundary-Layer Meteorology, 79, 279-300.

    Article  Google Scholar 

  • Moon, I., I. Ginis, T. Hara and B. Thomas, 2007: Physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135, 2869-2878.

    Article  Google Scholar 

  • Mueller, J.A. and F. Veron, 2009: A Lagrangian stochastic model for heavy particle dispersion in the atmospheric marine boundary layer. Bound.-Layer Meteorol., 130, 229-247.

    Article  Google Scholar 

  • Persing, J. and M.T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349-2371.

    Article  Google Scholar 

  • Powell, M.D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891-917.

    Article  Google Scholar 

  • Powell, M.D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918-938.

    Article  Google Scholar 

  • Powell, M.D., P.J. Vickery and T.A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279-283.

    Article  Google Scholar 

  • Rotunno, R. and K.A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: An evolutionary study using a hydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 543-561.

    Article  Google Scholar 

  • Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, W. Wang and J.G. Powers, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech Notes-475 + STR.

    Google Scholar 

  • Smith, S.D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. of Geophys. Res., 93, 15467-15472.

    Article  Google Scholar 

  • Smith, R.K., M.T. Montgomery and S.V. Nguyen, 2009: Tropical cyclone spin-up revisited. Q. J. R. Meteorol. Soc., 135, 1321-1335.

    Article  Google Scholar 

  • Stull, R.B., 1997: Reply. J. Atmos. Sci., 54, 579.

    Article  Google Scholar 

  • Wang, Y., 1995: On an inverse balance equation in sigma-coordinates for model initialization. Mon. Wea. Rev., 123, 482-488.

    Article  Google Scholar 

  • Wang, Y., J.D. Kepert and G. Holland, 2001: On the effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 2481-2500.

    Article  Google Scholar 

  • Zhang, J.A., P.G. Black, J.R. French and W.M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35:L14813, doi:10.1029/2008GL034374.

    Article  Google Scholar 

  • Zhang, J.A., W.M. Drennan, P.G. Black and J.R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 2455-2467.

    Article  Google Scholar 

  • Zilitinkevich, S.S., A.A. Grachev and C.W. Fairall, 2001: Scaling reasoning and field data on the sea surface roughness lengths for scalars. J. of Atmos. Sci., 58, 320-325.

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges NOAA’s Hurricane Forecast Improvement Project that supported this work. The author acknowledges the support provided by Indo-US Science and Technology Forum, and various national and international collaborators who have helped improving the operational HWRF model.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Capital Publishing Company

About this chapter

Cite this chapter

Bao, JW. (2016). Air-Sea Turbulent Flux Parameterizations in Tropical Cyclone Models. In: Mohanty, U.C., Gopalakrishnan, S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht. https://doi.org/10.5822/978-94-024-0896-6_6

Download citation

Publish with us

Policies and ethics