Skip to main content

Part of the book series: Atlantis Computational Intelligence Systems ((ATLANTISCIS,volume 6))

Abstract

Demand side energy management has become an important issue for energy management. In order to support energy planning and policy decisions forecasting the future demand is very important. Thus, forecasting the future energy demand has gained attention of both academic and professional world. In this chapter, the previous researches on energy demand forecast are classified and fuzzy techniques are introduced. A fuzzy seasonal time series model that forecasts the energy demand is proposed and illustrated with a real world application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turban E., Sharda R., Delen D., Decision Support and Business Intelligence Systems, 2010. Prentice Hall.

    Google Scholar 

  2. Zadeh L.A., Fuzzy sets. Information and Control. 1965; 8 (3), 338–353.

    Google Scholar 

  3. Kahraman C., Gülbay M., Kabak Ö., Application of Fuzzy Sets in Industrial Engineering: A Topical Classification. In Fuzzy Applications in Industrial Engineering. (ed. Kahraman C), 2006; pp. 1–55. Springer-Verlag: Nederland.

    Google Scholar 

  4. Kahraman C., Kaya ˙I., A fuzzy multicriteria methodology for selection among energy alternatives.Expert Systems with Applications. 2010; 37 (9), 6270–6281.

    Google Scholar 

  5. Huarng K., Hui-Kuang T., The application of neural networks to forecast fuzzy time series.Physica A: Statistical Mechanics and its Applications. 2006; 363 (2), 481–491.

    Article  Google Scholar 

  6. Domañska D., Wojtylak M., Application of fuzzy time series models for forecasting pollution concentrations. Expert Systems with Applications. 2012; 39 (19), 7673–7679.

    Article  Google Scholar 

  7. Wang C.H., Hsu L.C., Constructing and applying an improved fuzzy time series model:Taking the tourism industry for example. Expert Systems with Applications. 2008; 34, 2732–2738.

    Article  Google Scholar 

  8. Huarng K., Yu H.-K., A Type 2 fuzzy time series model for stock index forecasting. Physica A: Statistical Mechanics and its Applications. 2005; 353 (0), 445–462.

    Google Scholar 

  9. Chen S.M., Hwang J.R., Temperature prediction using fuzzy time series. IEEE Trans Syst Man Cybern B. 2000; 30 (2), 263–275.

    Article  Google Scholar 

  10. CRA., Primer on demand-side management, with an emphasis on price-responsive programs. California: Charles River Associates 2005 Februrary 2005. Report No.: Contract No.: D06090.

    Google Scholar 

  11. Suganthi L., Samuel A., Energy models for demand forecasting-A review. Renewable and Sustainable Energy Reviews. 2012; 16, 1223–1240.

    Article  Google Scholar 

  12. Bhattacharyya S.C., Energy Economics: Concepts, Issues, Markets and Governance. 2011. Springer.

    Google Scholar 

  13. Soldo B., Forecasting natural gas consumption. Applied Energy. 2012; 92, 26–37.

    Article  Google Scholar 

  14. Maggio G., Cacciola G., A variant of the Hubbert curve for world oil production forecasts. Energy Policy. 2009; 37 (11), 4761–4770.

    Article  Google Scholar 

  15. Valero A., Valero A., Physical geonomics: combining the exergy and Hubbert peak analysis for predicting mineral resources depletion. Resources Conserv. Recycl. 2010; 54 (12), 1074–1083.

    Article  Google Scholar 

  16. Forouzanfar M., Doustmohammadi A.,Menhaj M.B., Hasanzadeh S.,Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran. Appl. Energy. 2010; 87 (1), 268–274.

    Article  Google Scholar 

  17. Erdo˘gdu E., Natural gas demand in Turkey. Appl. Energy. 2010; 87 (1), 211–219.

    Article  Google Scholar 

  18. Jiang B., Wenying C., Yuefeng Y., Lemin Z., Victor D., The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizingMARKAL. Energy Policy. 2008; 36 (9), 3286–3299.

    Article  Google Scholar 

  19. Sailor D., Munoz R., Sensitivity of electricity and natural gas consumption to climate in the USA-methodology and results for eight states. Energy. 1997; 22 (10), 987–998.

    Article  Google Scholar 

  20. Vondracek J., Pelikan E., Konar O., Cermakova J., Eben K., Maly M., A statistical model for the estimation of natural gas consumption. Appl. Energy. 2008; 85 (5), 362–370.

    Article  Google Scholar 

  21. Brabec M., Konar O., Maly M., Pelikan E., Vondracek J., A statistical model for natural gas standardized load profiles. J. Roy. Statist. Soc. Series C: Appl. Statist. 2009; 58 (1), 123–139.

    Article  MathSciNet  Google Scholar 

  22. Aydinalp K.M., Ugursal V.I., Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl. Energy. 2008; 85 (4), 271–296.

    Article  Google Scholar 

  23. Kizilaslan R., Karlik B., Combination of neural networks forecasters for monthly natural gas consumption prediction. Neural Network World. 2009; 19 (2), 191–199.

    Google Scholar 

  24. Yoo S.H., Lim H.J., Kwak S.J., Estimating the residential demand function for natural gas in Seoul with correction for sample selection bias. Appl. Energy. 2009; 86 (4), 460–465.

    Article  Google Scholar 

  25. Potocnik P., Thaler M., Govekar E., Grabec I., Poredos A., Forecasting risks of natural gas consumption in Slovenia. Energy Policy. 2007; 35, 4271–4282.

    Article  Google Scholar 

  26. Dombayci O.A., The prediction of heating energy consumption in a model house by using artificial neural networks in Denizli-Turkey. Adv. Eng. Softw. 2010; 41 (2), 141–147.

    Article  Google Scholar 

  27. Thaler M., Grabec I., Poredos A., Prediction of energy consumption and risk of excess demand in a distribution system. Physica A: Statistical Mechanics and its Applications. 2005; 355, 46–53.

    Article  MathSciNet  Google Scholar 

  28. Potocnik P., Govekar E., Grabec I., Building forecasting applications for natural gas market. In Natural gas research progress. (ed. David N., Michel, T.), 2008; pp. 505–530. Nova Science Publishers: New York.

    Google Scholar 

  29. Sanchez-Ubeda E.F., Berzosa A., Modeling and forecasting industrial end-use natural gas consumption. Energy Economics. 2007; 29 (4), 710–742.

    Article  Google Scholar 

  30. Gori F., Ludovisi D., Cerritelli P.F., Forecast of oil price and consumption in the short term under three scenarios: parabolic, linear and chaotic behaviour. Energy. 2007; 32, 1291–1296.

    Article  Google Scholar 

  31. Himanshu A.A., Lester C.H., Electricity demand for Sri Lanka: a time series analysis. Energy. 2008; 33, 724–739.

    Article  Google Scholar 

  32. Al-Shobaki S.,Mohsen M., Modeling and forecasting of electrical power demands for capacity planning. Energy Conversion and Management. 2008; 49 (11), 3367–3375.

    Article  Google Scholar 

  33. Amarawickrama H.A., Hunt L.C., Electricity demand for Sri Lanka: a time series analysis. Energy. 2003; 33 (5), 724–739.

    Article  Google Scholar 

  34. Bianco V., Manca O., Nardini S., Electricity consumption forecasting in Italy using linear regression models. Energy. 2009; 34 (9), 1413–1421.

    Article  Google Scholar 

  35. Bessec M., Fouquau J., The non-linear link between electricity consumption and temperature in Europe: a threshold panel approach. Energy Economics. 2008; 30 (5), 2705–2721.

    Article  Google Scholar 

  36. Al-Ghandoor A., Al-Hinti I., Jaber J.O., Sawalha S.A., Electricity consumption and associated GHG emissions of the Jordanian industrial sector: empirical analysis and future projection. Energy Policy. 2008; 36 (1), 258–267.

    Article  Google Scholar 

  37. Lam J.C., Tang H.L., Li D.H.W., Seasonal variations in residential and commercial sector electricity consumption in Hong Kong. Energy. 2008; 33 (3), 513–523.

    Article  Google Scholar 

  38. Jónsson T., Pinson P., Madsen H., On the market impact of wind energy forecasts. Energy Economics. 2010; 32 (2), 313–320.

    Article  Google Scholar 

  39. Inglesi R., Aggregate electricity demand in South Africa: conditional forecasts to 2030. Appl. Energy. 2010; 87 (1), 197–204.

    Article  Google Scholar 

  40. Bhattacharyya S.C., Timilsina G.R., Modelling energy demand of developing countries: are the specific features adequately captured? Energy Policy. 2010; 38 (4), 1979–1990.

    Article  Google Scholar 

  41. Zhang M., Mu H., Li G., Ning Y., Forecasting the transport energy demand based on PLSR method in China. Energy. 2009; 34 (9), 1396–1400.

    Article  Google Scholar 

  42. Al-Ghandoor A. J.J.O., Al-Hinti I., Mansour I.M., Residential past and future energy consumption: potential savings and environmental impact. Renewable and Sustainable Energy Reviews. 2009; 13 (6-7), 1262–1274.

    Article  Google Scholar 

  43. Meng M., Niu D., Annual electricity consumption analysis and forecasting of China based on few observations methods. Energy Conversion and Management. 2011; 52, 953–957.

    Article  Google Scholar 

  44. Ediger V.S., Akar S., ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy. 2007; 35 (3), 1701–1708.

    Article  Google Scholar 

  45. Erdo˘gdu E., Electricity demand analysis using co-integration and ARIMA modeling: a case study of Turkey. Energy Policy. 2007; 35, 1129–1146.

    Article  Google Scholar 

  46. Pappas S.S., Ekonomou L., Karamousantas D.C., Chatzarakis G.E., Katsikas S.K., Liatsis P., Electricity demand loads modeling using auto regressive moving average (ARMA) models. Energy. 2008; 33, 1353–1360.

    Article  Google Scholar 

  47. Azadeh A., Ghaderi S.F., Sohrabkhani S., A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy. 2008; 36 (7), 2637–2644.

    Article  Google Scholar 

  48. Azadeh A., Tarverdian S., Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption. Energy Policy. 2007; 35 (10), 5229–5241.

    Article  Google Scholar 

  49. Kavaklıo˘glu K., Ceylan H., Ozturk H.K., Canyurt O.E., Modeling and prediction of Turkey’s electricity consumption using artificial neural networks. Energy Convers. Manage. 2009; 50, 2719–2727.

    Article  Google Scholar 

  50. Geem Z.W., Roper W.E., Energy demand estimation of South Korea using artificial neural network. Energy Policy. 2009; 37 (10), 4049–4054.

    Article  Google Scholar 

  51. Ekonomou L., Greek long-term energy consumption prediction using artificial neural networks. Energy. 2010; 35, 512–517.

    Article  Google Scholar 

  52. Canyurt O.E., Ozturk H.K., Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey. Energy Policy. 2008; 36 (7), 2562–2569.

    Article  Google Scholar 

  53. Canku¸s M., Ta¸skıran U., Turkey’s Electricity Consumption Forecasting Using Genetic algorithm. Energy Sources Part B. 2011; 6, 406–416.

    Article  Google Scholar 

  54. Ceylan H., Öztürk H.K., Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Convers. Manage. 2004; 45 (15-16), 2525–2537.

    Article  Google Scholar 

  55. Özçelik Y., Hepba¸slı A., Estimating petroleum energy production and consumption using a simulated annealing approach. Energy Sources B: Econ. Plan Policy. 2006; 1 (3), 255–265.

    Google Scholar 

  56. Pai P.F.,HongW.C., Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management. 2005; 46 (17), 2669–2688.

    Article  Google Scholar 

  57. Kiran M.S., Ozceylan E., Gunduz M., Paksoy T., A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey. Energy Conversion and Management Volume. 2012; 53 (1), 75–83.

    Article  Google Scholar 

  58. Ünler A., Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025. Energy Policy. 2008; 36, 1937–1944.

    Article  Google Scholar 

  59. Al-Rashidi M.R., EL-Naggar K.M., Long term electric load forecasting based on particle swarm optimization. Applied Energy. 2010; 87, 320–326.

    Article  Google Scholar 

  60. Hong W.C., Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Conversion and Management. 2009; 50 (1), 105–117.

    Article  Google Scholar 

  61. Toksarı M.D., Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy. 2007; 35, 3984–3990.

    Article  Google Scholar 

  62. Toksarı M.D., Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey. Energy Policy. 2009; 37, 1181–1187.

    Article  Google Scholar 

  63. Wang Q., Grey Prediction Model and Multivariate Statistical Techniques Forecasting Electrical Energy Consumption in Wenzhou, China. In Second International Symposium on Intelligent Information Technology and Security Informatics. 2009; pp. 167–170.

    Google Scholar 

  64. Akay D., Atak M., Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy. 2007; 32 (9), 1670–1675.

    Article  Google Scholar 

  65. Lee S.C., Shih L.H., Forecasting of electricity costs based on an enhanced grey-based learning model: a case study of renewable energy in Taiwan. Technological Forecasting and Social Change. 2011; 78 (7), 1242–1253.

    Article  Google Scholar 

  66. Lee Y.S., Tong L.I., deneme. deneme. 1009; deneme.

    Google Scholar 

  67. Ediger V.S., Tatlıdil H., Forecasting the primary energy demand in Turkey and analysis of cyclic patterns. Energy Convers. Manage. 2002; 43, 473–487.

    Article  Google Scholar 

  68. Sarak H., Satman A., The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study. Energy. 2003; 28 (9), 929–939.

    Article  Google Scholar 

  69. Ceylan H., Ceylan H., Haldenbilen S., Ba¸skan Ö., Transport energy modeling with metaheuristic harmony search algorithm, an application to Turkey. Energy Policy. 2008; 36 (7), 2527–2535.

    Article  Google Scholar 

  70. Kanudia A., Labriet M., Loulou R., Vaillancourt K., Waaub J.P., The world-MARKAL model and its application to cost-effectiveness, permit sharing and cost benefit analyses. In Energy and environment. (ed. Loulou R. W.J., Zaccour G.), 2005; pp. 111–148. Springer.

    Google Scholar 

  71. Rout U.K., Vo A., Singh A., Fahl U., Blesl M., Gallachóir B.P.O., Energy and emissions forecast of China over a long-time horizon. Energy. 2011; 36, 1–11.

    Article  Google Scholar 

  72. Pai P.F., Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads. Energy Conversion and Management 2006; 47 (15-16), 2283–2289.

    Article  Google Scholar 

  73. Song K.B., Baek Y.S., Hong D.H., Jang G., Short-term load forecasting for the holidays using fuzzy linear regression method. IEEE Transactions on Power Systems. 2005; 20, 96–101.

    Article  Google Scholar 

  74. Azadeh A., Saberi M., Seraj O., An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran. Energy. 2010; 35 (6), 2351–2366.

    Article  Google Scholar 

  75. Che J.,Wang J.,Wang G., An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting. Energy. 2012; 37 (1), 657–664.

    Article  Google Scholar 

  76. Kucukali S., Baris K., Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy. 2010; 38, 2438–2445.

    Article  Google Scholar 

  77. Chang P.C., Fan C.Y., Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Electr. Power Energy Syst. 2011; 33 (1), 17–27.

    Article  Google Scholar 

  78. Viet N., Mandziuk J., Neural and fuzzy neural networks in prediction of natural gas consumption. Neural Parallel Scientific Comput. 2005; 13 (3-4), 265–286.

    MathSciNet  Google Scholar 

  79. Behrouznia A., Saberi M., Azadeh A., Asadzadeh S.M., Pazhoheshfar P., An adaptive network based fuzzy inference system-fuzzy data envelopment analysis for gas consumption forecasting and analysis: the case of South America. In International conference on intelligent and advanced systems; ICIAS 2010. 2010.

    Google Scholar 

  80. Li K., Su H., Forecasting building energy consumption with hybrid genetic algorithmhierarchical adaptive network-based fuzzy inference system. Energy and Buildings. 2010; 42 (11), 2070–2076.

    Article  Google Scholar 

  81. Azadeh A., Asadzadeh S.M., Ghanbari A., An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: uncertain and complex environments. Expert Systems with Applications. 2010; 38 (3), 2224–2234.

    Article  Google Scholar 

  82. Mamlook R., Badran O., Abdulhadi E. A fuzzy inference model for short-term load forecasting. Energy Policy. 2009; 37 (4), 1239–1248.

    Article  Google Scholar 

  83. Ying L.C., Pan M.C., Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Conversion and Management. 2008; 49 (2), 205–211.

    Article  MathSciNet  Google Scholar 

  84. Lau H.C.W., Cheng E.N.M., Lee C.K.M., Ho G.T.S., A fuzzy logic approach to forecast energy consumption change in a manufacturing system. Expert Systems with Applications. 2008; 34 (3), 1813–1824.

    Article  Google Scholar 

  85. Nguyen HT, Wu B., Fundamentals of statistics with fuzzy data, 2006. Springer.

    Google Scholar 

  86. Kahraman C., Yavuz M., Kaya ˙I., Fuzzy and Grey Forecasting Techniques and Their Applications in Production Systems, Production Engineering and Management under Fuzziness. (eds. Kahraman C., Yavuz M.), 2010; pp. 1–24. Springer Berlin/Heidelberg.

    Google Scholar 

  87. Yolcu U., Egrioglu E., Uslu V.R., Basaran M.A., Aladag C.H., A new approach for determining the length of intervals for fuzzy time series. Applied Soft Computing. 2009; 9 (2), 647–651.

    Article  Google Scholar 

  88. Song Q., Chissom B.S., Fuzzy time series and its models. Fuzzy Sets and Systems. 1993; 54 (3), 269–277.

    Article  MathSciNet  Google Scholar 

  89. Song Q., Chissom B.S., Forecasting enrollments with fuzzy time series — Part I. Fuzzy Sets and Systems. 1993; 54 (1), 1–9.

    Article  Google Scholar 

  90. Song Q., Chissom B.S., Forecasting enrollments with fuzzy time series — Part II. Fuzzy Sets and Systems. 1994; 62 (1), 1–8.

    Article  Google Scholar 

  91. Chen S.-M., Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems. 1996; 81 (3), 311-319.

    Article  Google Scholar 

  92. Huarng K., Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Systems. 2001; 123 (3), 369–386.

    Article  MathSciNet  Google Scholar 

  93. Chen S.-M., Forecasting Enrollments Based on High-Order Fuzzy Time Series. Cybernetics and Systems. 2002; 33 (1), 1–16.

    Google Scholar 

  94. Lee H.-S., Chou M.-T., Fuzzy forecasting based on fuzzy time series. International Journal of Computer Mathematics. 2004; 81 (7), 781–789.

    Article  MathSciNet  Google Scholar 

  95. Huarng K., Yu H.K., A Type 2 fuzzy time series model for stock index forecasting. Physica A: Statistical Mechanics and its Applications. 2005; 353, 445–462.

    Article  Google Scholar 

  96. Own C.-M., Yu P.-T., Forecasting Fuzzy Time Series on a Heuristic High-Order Model. Cybernetics and Systems. 2005; 36 (7), 705–717.

    Article  Google Scholar 

  97. Yu H.-K., A refined fuzzy time-series model for forecasting. Physica A: Statistical Mechanics and its Applications. 2005; 346 (3-4), 657–681.

    Google Scholar 

  98. Tsaur R.-C., O Yang J.-C., Wang H.-F., Fuzzy relation analysis in fuzzy time series model. Computers & Mathematics with Applications. 2005; 49 (4), 539–548.

    Article  MathSciNet  Google Scholar 

  99. Li-Wei L., Li-Hui W., Shyi-Ming C., Yung-Ho L., Handling forecasting problems based on two-factors high-order fuzzy time series. Fuzzy Systems, IEEE Transactions on. 2006; 14 (3), 468–477.

    Article  Google Scholar 

  100. Chen S.-M., Chung N.-Y., Forecasting enrollments using high-order fuzzy time series and genetic algorithms. International Journal of Intelligent Systems. 2006; 21 (5), 485–501.

    Article  Google Scholar 

  101. Chen T.-L., Cheng C.-H., Jong Teoh H., Fuzzy time-series based on Fibonacci sequence for stock price forecasting. Physica A: Statistical Mechanics and its Applications. 2007; 380 (0), 377–390.

    Article  Google Scholar 

  102. Li S.-T., Cheng Y.-C., Deterministic fuzzy time series model for forecasting enrollments. Computers & Mathematics with Applications. 2007; 53 (12), 1904–1920.

    Article  MathSciNet  Google Scholar 

  103. Singh S.R., A simple method of forecasting based on fuzzy time series. Applied Mathematics and Computation. 2007; 186 (1), 330-339.

    Article  MathSciNet  Google Scholar 

  104. Cheng C.-H., Chen T.-L., Teoh H.J., Chiang C.-H., Fuzzy time-series based on adaptive expectation model for TAIEX forecasting. Expert Systems with Applications. 2008; 34 (2), 1126–1132.

    Article  Google Scholar 

  105. Liu H.-T.,Wei M.-L., An improved fuzzy forecasting method for seasonal time series. Expert Systems with Applications. 2010; 37 (9), 6310–6318.

    Article  Google Scholar 

  106. Edwin M., Statistics for Business and Economics: Methods and Applications, 1994. Norton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ˙Irem Uçal Sarı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Atlantis Press

About this chapter

Cite this chapter

Sarı, ˙.U., Öztay¸si, B. (2012). Forecasting Energy Demand Using Fuzzy Seasonal Time Series. In: Kahraman, C. (eds) Computational Intelligence Systems in Industrial Engineering. Atlantis Computational Intelligence Systems, vol 6. Atlantis Press, Paris. https://doi.org/10.2991/978-94-91216-77-0_12

Download citation

  • DOI: https://doi.org/10.2991/978-94-91216-77-0_12

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-91216-76-3

  • Online ISBN: 978-94-91216-77-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics