Skip to main content

Part of the book series: Atlantis Computational Intelligence Systems ((ATLANTISCIS,volume 6))

  • 1777 Accesses

Abstract

In this chapter, computational intelligence systems are briefly defined and then classified with respect to the interest areas of industrial engineering. Literature review results for this classification are given for each intelligence system separately. It is seen that each interest area of industrial engineering finds an intelligent system application in the literature. Either integrated or hybrid usages of these systems are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aluclu I., Dalgic A., and Toprak Z.F., (2008). A fuzzy logic-based model for noise control at industrial workplaces, Applied Ergonomics, 39, 368ā€“378.

    ArticleĀ  Google ScholarĀ 

  2. Balin S., (2011). Parallelmachine scheduling with fuzzy processing times using a robust genetic algorithm and simulation, Information Sciences, 181, 3551ā€“3569.

    ArticleĀ  Google ScholarĀ 

  3. Berrichi A., Yalaoui F., Amodeo L., and Mezghiche M., (2010). Bi-Objective Ant Colony Optimization approach to optimize production and maintenance scheduling, Computers & Operations Research, 37, 1584ā€“1596.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Blank T.B. and Brown S.D., (1993). Data processing using neural networks, Analytica Chimica Acta, 277 (2), 273ā€“287.

    ArticleĀ  Google ScholarĀ 

  5. Bonabeou E. and Meyer C. (Eds.), (2001). Swarm Intelligence: A Whole New Way to Think About Business. Harward Business Review.

    Google ScholarĀ 

  6. Cateni S. and Colla V., (2012). Fuzzy Inference System for Data Processing in Industrial Applications, Fuzzy Inference System - Theory and Applications, Dr. Mohammad Fazle Azeem (Ed.), ISBN: 978-953-51-0525-1.

    Google ScholarĀ 

  7. Cerny V., (1985). A thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45, 41ā€“51.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. Chang P.-T., Huang L.-C., and Lin H.-J., (2000). The fuzzy Delphi method via fuzzy statistics and membership function fitting and an application to the human resources, Fuzzy Sets and Systems, 112, 511ā€“520.

    ArticleĀ  Google ScholarĀ 

  9. Chuu S.-J., (2009). Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information, Computers & Industrial Engineering,57 (3), 1033ā€“1042.

    ArticleĀ  Google ScholarĀ 

  10. Corno F., Reorda M.S., and Squillero G., (2004). Evolutionary Simulation-Based Validation, International Journal on Artificial Intelligence Tools, 14 (1-2), Dec. 2004, 897ā€“916.

    ArticleĀ  Google ScholarĀ 

  11. Dimitrov V.D., (1977). Social Choice and Self-Organization under Fuzzy Management, Kybernetes, 6 (3) 153ā€“156.

    ArticleĀ  Google ScholarĀ 

  12. Dorigo M., (1992). Optimization, learning and natural algorithms. Unpublished doctoral dissertation, University of Politecnico di Milano, Italy.

    Google ScholarĀ 

  13. Dorigo M. and Gambardella L.M., (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transaction on Evolutionary Computation, 1, 53ā€“66.

    ArticleĀ  Google ScholarĀ 

  14. Fonseca D.J. and Navaresse D., (2002). Artificial neural networks for job shop simulation, Advanced Engineering Informatics, 16, 241ā€“246.

    ArticleĀ  Google ScholarĀ 

  15. Gambardella L.M. and Dorigo M., (1995). Ant-Q: a reinforcement learning approach to the travelling salesman problem. In Proceedings of the Twelfth International Conference on Machine Learning. California, USA.

    Google ScholarĀ 

  16. Gambardella L.M. and Dorigo M., (1996). Solving Symmetric and Asymmetric TSPs by Ant Colonies. In Proceedings of the IEEE Conference on Evolutionary Computation (pp. 622ā€“627).

    Google ScholarĀ 

  17. German S. and German D., (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Proceedings Pattern Analysis and Machine Intelligence,6 (6), 721ā€“741.

    ArticleĀ  Google ScholarĀ 

  18. Groissboeck W., Lughofer E., and Thumfart S., (2010). Associating visual textures with human perceptions using genetic algorithms, Information Sciences, 180, 2065ā€“2084.

    ArticleĀ  Google ScholarĀ 

  19. Ho W., He T., Lee C.K.M., and Emrouznejad A., (2012) Strategic logistics outsourcing: An integrated QFD and fuzzy AHP approach, Expert Systems with Applications, 39, 10841ā€“10850.

    ArticleĀ  Google ScholarĀ 

  20. Holland J.H. (Ed.), (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, MI: University of Michigan Press.

    Google ScholarĀ 

  21. Hsia S.-W., (1998). Fuzzy logic based decision model for product design, International Journal of Industrial Ergonomics, 21, 103ā€“116.

    ArticleĀ  Google ScholarĀ 

  22. Hsu C.-H., Jiang B.C., and Lee E.S., (1999). Fuzzy Neural Network Modeling for Product Development, Mathematical and Computer Modelling, 29, 71ā€“81.

    Google ScholarĀ 

  23. JaĀ“skowski P. and Sobotka A., Scheduling Construction Projects Using Evolutionary Algorithm, Journal Of Construction Engineering And Management, Asce / August 2006 / 861.

    Google ScholarĀ 

  24. Kadadevaramath R.S., Chen J.C.H., Shankar B.L., and Rameshkumar K., (2012). Application of particle swarm intelligence algorithms in supply chain network architecture optimization, Expert Systems with Applications, 39, 10160ā€“10176.

    ArticleĀ  Google ScholarĀ 

  25. Kahraman C., Beskese A., and Ruan D., (2004). Measuring flexibility of computer integrated manufacturing systems using fuzzy cash flow analysis, Information Sciences, 168, 77ā€“94.

    ArticleĀ  Google ScholarĀ 

  26. Kang F., Li J., andMa Z., (2011). Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Information Science, 181 (16), 3508ā€“3531.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  27. Karaboga D. and Ɩkdem S., (2004). A simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm. Turk J. Elec. Engin., 12 (1).

    Google ScholarĀ 

  28. KaraboĖ˜ga D., (2005). An idea based on honeybee swarm for numerical optimization. Technical Report TR06, Erciyes University.

    Google ScholarĀ 

  29. KaraboĖ˜ga D. and BaĀøstĆ¼rk B., (2007a). A Powerful and efficient algorithm for numerical optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39 (3), 459ā€“ 471.

    Google ScholarĀ 

  30. KaraboĖ˜ga D. and BaĀøstĆ¼rk B., (2007b). Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. LNCS: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing, 4529, 789ā€“798.

    Google ScholarĀ 

  31. Kia R., Baboli A., Javadian N., Tavakkoli-Moghaddam R., Kazemi M., and Khorrami J., (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing, Computers & Operations Research, 39, 2642ā€“2658.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  32. Kirpatrick S., Gelat Jr. C.D., and Vecchi M.P., (1983). Optimization by simulated annealing. Science, 220, 671ā€“680.

    Google ScholarĀ 

  33. Kouvelis P., Chiang W.-C., and James Fitzsimmons J., (1992). Simulated annealing for machine layout problems in the presence of zoning constraints, European Journal of Operational Research, 57 (2) 203ā€“223.

    ArticleĀ  Google ScholarĀ 

  34. Kƶse E., ĀøSahinbaĀøskan T., and GĆ¼ler Ė™I. (2009). The investigation of effects of digital proofing systems used in colour management on print quality with neural Networks, Expert Systems with Applications, 36, 745ā€“754.

    Google ScholarĀ 

  35. Lei D., (2008) A Pareto archive particle swarm optimization for multi-objective job shop scheduling, Computers & Industrial Engineering, 54, 960ā€“971.

    ArticleĀ  Google ScholarĀ 

  36. Lokketangen A. and Glover F., (1998). Solving zero-one mixed integer programming problems using tabu search, European Journal of Operational Research, 106 (2-3), 624ā€“658.

    ArticleĀ  Google ScholarĀ 

  37. Lu J., Ruan D., and Zhang G., (2008). Fuzzy Set Techniques in E-Service Applications, Studies in Fuzziness and Soft Computing, 2008, 220, 553ā€“566, DOI: 10.1007/978-3-540-73723-0_28.

    Google ScholarĀ 

  38. McCulloch W.S. and Pitts W.H., (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115ā€“133.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  39. Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., and Teller E., (1953). Equation of State Calculations by Fast Computing Machines. Journal Chemistry Physics, 21 (6), 1087ā€“1092.

    ArticleĀ  Google ScholarĀ 

  40. Ming X.G. and Mak K.L., (2001). Intelligent approaches to tolerance allocation and manufacturing operations selection in process planning, Journal of Materials Processing Technology, 117, 75ā€“83.

    ArticleĀ  Google ScholarĀ 

  41. Morin S., GagnĆ© C., and Gravel M., (2009). Ant colony optimization with a specialized pheromone trail for the car-sequencing problem, European Journal of Operational Research, 197, 1185ā€“1191.

    ArticleĀ  Google ScholarĀ 

  42. Musharavati F. and Hamouda A.M.S., (2012). Simulated annealing with auxiliary knowledge for process planning optimization inreconfigurable manufacturing, Robotics and Computer-Integrated Manufacturing, 28, 113ā€“131.

    Google ScholarĀ 

  43. Qing-dao-er-ji R. andWang Y., (2012). A new hybrid genetic algorithm for job shop scheduling problem, Computers & Operations Research, 39, 2291ā€“2299.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  44. Pacellaa M., Semerarob Q., and Anglani A., (2004). Manufacturing quality control by means of a Fuzzy ART network trained on natural process data, Engineering Applications of Artificial Intelligence, 17, 83ā€“96.

    ArticleĀ  Google ScholarĀ 

  45. Pishvaee M.S. and Razmi J., (2012). Environmental supply chain network design using multiobjective fuzzy mathematical programming, Applied Mathematical Modelling, 36, 3433ā€“3446.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  46. Socha K. and Dorigo M., (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185, 1155ā€“1173.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  47. StĆ¼tzle T. and Hoos H., (2000). MAX-MIN Ant System. Future Generation Computer Systems, 16 (8), 889ā€“904.

    Google ScholarĀ 

  48. Sundar S. and Singh A., (2012). A swarm intelligence approach to the early/tardy scheduling problem, Swarm and Evolutionary Computation, 4, 25ā€“32.

    ArticleĀ  Google ScholarĀ 

  49. Tan K.H., LimC.P., Platts K., and Koay H.S., (2006). An intelligent decision support system for manufacturing technology investments, International Journal of Production Economics, 104, 179ā€“190.

    Google ScholarĀ 

  50. Tasgetiren M.F., Pan Q.-K., Suganthan P.N., and Chen A.H.-L., (2011). A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops, Information Sciences, 181 (16) 3459ā€“3475.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  51. Torabi S.A., Ebadian M., and Tanha R., (2010). Fuzzy hierarchical production planning(with a case study), Fuzzy Sets and Systems, 161, 1511ā€“1529.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  52. Tsai Y.-W. and Gemmill D.D., (1998). Using tabu search to schedule activities of stochastic resource-constrained projects, European Journal of Operational Research, 111, 129ā€“141.

    ArticleĀ  Google ScholarĀ 

  53. Tsao C.-T., (2012). Fuzzy net present values for capital investments in an uncertain environment, Computers & Operations Research, 39, 1885ā€“1892.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  54. Udhayakumar A., Charles V., and Kumar M., (2011). Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems, Omega, 39, 387ā€“397.

    ArticleĀ  Google ScholarĀ 

  55. Ung S.T., Williams V., Bonsall S., and Wang J., (2006). Test case based risk predictions using artificial neural network, Journal of Safety Research, 37, 245ā€“260.

    ArticleĀ  Google ScholarĀ 

  56. Xinchao Z., (2011). Simulated annealing algorithm with adaptive neighborhood. Applied Soft Computing, 11, 1827ā€“1836.

    ArticleĀ  Google ScholarĀ 

  57. Xu B., (2006). Market differential evaluations of strategic alliances in the pharmaceutical/biotech industry, Journal of High Technology Management Research, 17, 43ā€“52.

    Google ScholarĀ 

  58. Velsker T., Eerme M., Majak J., Pohlak M., and Karjust K., (2011). Artificial neural networks and evolutionary algorithms in engineering design, Journal of Achievements in Materials and Manufacturing Engineering, 44 (1), 88ā€“95.

    Google ScholarĀ 

  59. Wang J.R., (1999). A Fuzzy Set Approach to Activity Scheduling for Product Development, The Journal of the Operational Research Society, 50 (12), 1217ā€“1228.

    ArticleĀ  Google ScholarĀ 

  60. Wu X., Chu C.-H., Wang Y., and Yan W., (2007). A genetic algorithm for cellular manufacturing design and layout, European Journal of Operational Research, 181, 156ā€“167.

    ArticleĀ  Google ScholarĀ 

  61. Yakhchali S.H., (2012). A path enumeration approach for the analysis of critical activities in fuzzy networks, Information Sciences, 204, 23ā€“35.

    ArticleĀ  Google ScholarĀ 

  62. Zadeh L.A., (1965). ā€œFuzzy Sets,ā€ Information and Control, 8, 338ā€“352.

    Google ScholarĀ 

  63. Zhang H. and Xing F., (2010). Fuzzy-multi-objective particle swarm optimization for timecost-quality tradeoff in construction, Automation in Construction, 19, 1067ā€“1075.

    ArticleĀ  Google ScholarĀ 

  64. Zhang H., Zhu Y., Zou W., and Yan X., (2012). A hybrid multi-objective artificial bee colony algorithm for burdening optimization of copper strip production, Applied Mathematical Modelling, 36, 2578ā€“2591.

    ArticleĀ  Google ScholarĀ 

  65. Zheng G., Zhu N., Tian Z., Chen Y., and Sun B., (2012). Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments, Safety Science, 50, 228ā€“239.

    ArticleĀ  Google ScholarĀ 

  66. Kolich M., Seal N., and Taboun S., (2004). Automobile seat comfort prediction: statistical model vs. artificial neural network, Applied Ergonomics, 35, 275ā€“284

    ArticleĀ  Google ScholarĀ 

  67. Lin C.-M. and Gen M., (2008). Multi-criteria human resource allocation for solving multistage combinatorial optimization problems using multiobjective hybrid genetic algorithm. Expert Syst. Appl., 34 (4), 2480ā€“2490.

    ArticleĀ  Google ScholarĀ 

  68. Al-Turki U., Fedjki C., and Andijani A., (2001). Tabu search for a class of single-machine scheduling problems, Computers & Operations Research, 28 (12), 1223ā€“1230.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  69. Price K. and Storn R., (1996). Minimizing the Real Functions of the ICECā€™96 contest by Differential Evolution, IEEE International Conference on Evolutionary Computation (ICECā€™96), May 1996, pp. 842ā€“844 .

    Google ScholarĀ 

  70. Kennedy J. and Eberhart R.C., Particle Swarm Optimization. In Proceedings of IEEE International Conference on In Neural Networks. 1995, pp. 1942ā€“1948.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz Kahraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Atlantis Press

About this chapter

Cite this chapter

Kahraman, C. (2012). Computational Intelligent Systems in IndustrialEngineering. In: Kahraman, C. (eds) Computational Intelligence Systems in Industrial Engineering. Atlantis Computational Intelligence Systems, vol 6. Atlantis Press, Paris. https://doi.org/10.2991/978-94-91216-77-0_1

Download citation

  • DOI: https://doi.org/10.2991/978-94-91216-77-0_1

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-91216-76-3

  • Online ISBN: 978-94-91216-77-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics