Skip to main content

On Deciding Whether a Submanifold Is Parabolic or Hyperbolic Using Its Mean Curvature

  • Chapter
  • First Online:
Topics in Modern Differential Geometry

Part of the book series: Atlantis Transactions in Geometry ((ATLANTIS,volume 1))

Abstract

We are going to see how the Hessian-Index analysis of the extrinsic distance function defined on a submanifold give us a geometric description of some of its functional theoretic properties such as its parabolicity/hyperbolicity.

Work partially supported by the Caixa Castelló Foundation and DGI grant MTM2007-62344.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.V. Ahlfors, Sur le type d’une surface de Riemann, vol. 201 (C.R. Academy of Sciences, Paris, 1935), pp. 30–32

    Google Scholar 

  2. L. Alías, A. Hurtado, V. Palmer, Geometric Analysis of Lorentzian distance function on spacelike hypersurfaces, to appear in Transactions of the American Mathematical Society

    Google Scholar 

  3. P.G. Doyle, On deciding whether a surface is parabolic or hyperbolic, in Geometry of random motion: proceedings of the AMS-IMS-SIAM Joint Summer Research Conference 1987 (AMS Bookstore, 1988)

    Google Scholar 

  4. J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32, 703–716 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.P. do Carmo, Riemannian Geometry, Mathematics: Theory and Applications (Birkhäuser Boston Inc., Boston MA, 1992)

    Google Scholar 

  6. E.B. Dynkin, Markof Processes (Springer, Heidelberg, 1965)

    Google Scholar 

  7. A. Esteve, V. Palmer, On the Characterization of Parabolicity and Hyperbolicity of Submanifolds. J. Lond. Math. Soc. 84(2), 120–136 (2011)

    Google Scholar 

  8. R. Greene, H. Wu, Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Mathematics, vol. 699 (Springer, Berlin and New York, 1979)

    Google Scholar 

  9. A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36, 135–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Holopainen, S. Markvorsen, V. Palmer, p-capacity and p-hyperbolicity of submanifolds, Revista Matemática Iberoamericana. 25(2), 709–738 (2009)

    Google Scholar 

  11. K. Ichihara, Curvature, geodesics and the Brownian motion on a Riemannian manifold I; recurrence properties. Nagoya Math. J. 87, 101–114 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Ichihara, Curvature, geodesics and the Brownian motion on a Riemannian manifold II; explosion properties. Nagoya Math. J. 87, 115–125 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Jorge, D. Koutroufiotis, An estimate for the curvature of bounded submanifolds. Am. J. Math. 103(4), 711–725 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Li, Curvature and function theory on Riemannian manifolds, in Surveys in Differential Geometry, vol. VII (International Press, Boston, 2000), pp. 375–432

    Google Scholar 

  15. T. Lyons, D. Sullivan, Function theory, random paths and covering spaces. J. Diff. Geometry 19, 299–323 (1984)

    MathSciNet  MATH  Google Scholar 

  16. B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier 6, 271–355 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Milnor, On deciding whether a surface is parabolic or hyperbolic. Am. Math. Mon. 84, 43–46 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Markvorsen, M. Min-Oo, Global Riemannian Geometry: Curvature and Topology Advanced Courses in Mathematics (CRM Barcelona, Birkhäuser, 2003)

    Book  MATH  Google Scholar 

  19. S. Markvorsen, S. McGuiness, C. Thomassen, Transient random walks on graphs and metric spaces with applications to hyperbolic surfaces. Proc. Lond. Math. Soc. 64, 1–20 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Markvorsen, V. Palmer, Generalized isoperimetric inequalities for extrinsic balls in minimal submanifolds. J. Reine Angew. Math. 551, 101–121 (2002)

    MathSciNet  MATH  Google Scholar 

  21. S. Markvorsen, V. Palmer, Transience and capacity of minimal submanifolds. GAFA, Geom. Funct. Anal. 13, 915–933 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Markvorsen, V. Palmer, How to obtain transience from bounded radial mean curvature. Trans. Am. Math. Soc. 357(9), 3459–3479 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Markvorsen, V. Palmer, Extrinsic Isoperimetric Analysis on Submanifolds with Curvatures Bounded from Below. J. Geom. Anal. 20, 388–421 (2010)

    Google Scholar 

  24. B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic Press, Massachusetts, 1983)

    Google Scholar 

  25. V. Palmer, Mean exit time from convex hypersurfaces. Proc. Am. Math. Soc. 126(7), 2089–2094 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Palmer, Isoperimetric inequalities for extrinsic balls in minimal submanifolds and their applications. J. Lond. Math. Soc. 60(2), 607–616 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Polya, Uber eine Aufgabe der Wahrscheinlichkeitstheorie betreffend die Irrfahrt im Strassennetz. Math. Ann. 84, 149–160 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Wiener, Differential space. J. Math. Phys. Mass. Tech. 2, 131–174 (1923)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Palmer, V. (2017). On Deciding Whether a Submanifold Is Parabolic or Hyperbolic Using Its Mean Curvature. In: Haesen, S., Verstraelen, L. (eds) Topics in Modern Differential Geometry. Atlantis Transactions in Geometry, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-240-3_4

Download citation

Publish with us

Policies and ethics