Skip to main content

Periodic Trajectories of Dynamical Systems Having a One-Parameter Group of Symmetries

  • Chapter
  • First Online:
Topics in Modern Differential Geometry

Part of the book series: Atlantis Transactions in Geometry ((ATLANTIS,volume 1))

  • 1226 Accesses

Abstract

We study a class of dynamical systems on a compact (semi-)Riemannian manifold endowed with a non trivial 1-parameter (pre-compact) group of symmetries, and we determine the existence of a class of periodic trajectories of these systems.

P. Piccione is partially sponsored by CNPq (Brazil) and Fapesp (Soa Paulo, Brazil).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.K. Beem, P.E. Ehrlich, K. Easley, Global Lorentzian Geometry (Marcel Dekker Inc., New York, 1996)

    MATH  Google Scholar 

  2. A. Cannas da Silva, Lectures on Symplectic Geometry, vol. 1764. Lecture Notes in Mathematics (Springer, Berlin, 2001)

    Google Scholar 

  3. E. Caponio, A. Masiello, Trajectories of charged particles in a region of a stationary spacetime. Class. Quantum Grav. 19, 2229–2256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. D’Ambra, Isometry groups of Lorentz manifolds. Invent. Math. 92, 555–565 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.P. do Carmo, Riemannian geometry, Mathematics: Theory and Applications (Birkhäuser Boston, Inc., Boston, 1992)

    Google Scholar 

  6. R. Fintushel, Circle actions on simply connected 4-manifolds. Trans. Am. Math. Soc. 230, 147–171 (1977)

    MathSciNet  MATH  Google Scholar 

  7. R. Fintushel, Classification of circle actions on 4-manifolds. Trans. Am. Math. Soc. 242, 377–390 (1978)

    MathSciNet  MATH  Google Scholar 

  8. J.L. Flores, M.A. Javaloyes, P. Piccione, Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field, preprint 2009, arXiv:0812.1163

  9. R. Giambò, M.A. Javaloyes, A second order variational principle for the Lorentz force equation: conjugacy and bifurcation. Proc. R. Soc. Edinb. Sect. A 137, 923–936 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Giambò, F. Giannoni, P. Piccione, On the least action principle–Hamiltonian dynamics on fixed energy levels in the non-convex case. Adv. Nonlinear Stud. 6(2), 255–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.W. Knapp, Lie groups beyond an introduction, Progress in Mathematics (Birkhõuser Boston Inc., Boston, 1996)

    Google Scholar 

  12. S. Kobayashi, Transformation groups in differential geometry, Reprint of the 1972 Edition. Classics in Mathematics, 1972nd edn. (Springer, Berlin, 1995)

    Google Scholar 

  13. S. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. I (Wiley Classics Library, A Wiley-Interscience Publication, Wiley, New York, 1996)

    Google Scholar 

  14. J. Kollár, Circle actions on simply connected 5-manifolds. Topology 45, 643–671 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Marzantowicz, A G-Lusternik-Schnirelmann category of space with an action of a compact Lie group. Topology 28, 403–412 (1989)

    Google Scholar 

  16. E. Minguzzi, M. Sánchez, Connecting solutions of the Lorentz force equation do exist. Commun. Math. Phys. 264, 349–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Molino, Riemannian foliations, Progress in Mathematics (Birkhõuser Boston Inc., Boston, 1988)

    Google Scholar 

  18. E. Noether, Invariante Variationsprobleme, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1918, 235–257

    Google Scholar 

  19. B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic Press, New York, 1983)

    MATH  Google Scholar 

  20. P. Piccione, A. Zeghib, Action of discrete groups on stationary Lorentz manifolds. Ergod Theor Dyn Syst. 34(5), 1640–1673 (2014)

    Google Scholar 

  21. M. Sánchez, Lorentzian manifolds admitting a Killing vector field. Proc. Second World Congr. Nonlinear Analysts Part 1 (Athens, 1996). Nonlinear Anal. 30(1), 643–654 (1997)

    Google Scholar 

  22. P. Scott, The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15(5), 401–487 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Seifert, Topologie dreidimensionaler gefaserte Räume. Acta Math. 60, 148–238 (1932)

    Google Scholar 

  24. E.W.C. van Groesen, Hamiltonian flow on an energy surface: 240 years after the Euler–Maupertuis principle, in Geometric Aspects of the Einstein Equations and Integrable Systems (Scheveningen, 1984). Lecture Notes in Physics, vol. 239 (Springer, Berlin, 1985), pp. 322–341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Giambò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Giambò, R., Piccione, P. (2017). Periodic Trajectories of Dynamical Systems Having a One-Parameter Group of Symmetries. In: Haesen, S., Verstraelen, L. (eds) Topics in Modern Differential Geometry. Atlantis Transactions in Geometry, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-240-3_2

Download citation

Publish with us

Policies and ethics