Skip to main content

Bose-Einstein Condensates and Signal Transmission in Optical Fibers

  • Chapter
  • First Online:
Mathematical Models with Singularities

Part of the book series: Atlantis Briefs in Differential Equations ((ABDE,volume 1))

  • 882 Accesses

Abstract

The nonlinear Schrödinger equation (NLSE) is one of the most important models of Mathematical Physics and plays a central role in a variety of contexts, especially those related with Quantum Mechanics. Dynamics of Bose-Einstein Condensates and signal transmission in Optical Fibers are the most important examples. In this chapter, we show that the study of the NLSE with cubic nonlinearity (Gross-Pitaevskii equation) is closely related to the analysis of differential equations with singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27(6), 3135–3145 (1983)

    Article  Google Scholar 

  2. Abdullaev, F.K., Caputo, J.G., Kraenkel, R.A., Malomed, B.A.: Bose-Einstein condensates in 2D with time-periodic scattering length. J. Low Temp. Phys. 134(1–2), 671–676 (2004)

    Article  Google Scholar 

  3. Belmonte-Beitia, J., Pérez-García, V.M., Torres, P.J.: Solitary waves for linearly coupled nonlinear Schrödinger equations with inhomogeneous coefficients. J. Nonlinear Sci. 19, 437–451 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brusch, L., Torcini, A., Bär, M.: Nonlinear analysis of the Eckhaus instability: modulated amplitude waves and phase chaos with nonzero average phase gradient. Phys. D 174, 152–167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carretero-González, R., Frantzeskakis, D.J., Kevrekidis, P.G.: Nonlinear waves in Bose-Einstein condensates: physical relevance and mathematical techniques. Nonlinearity 21, R139–R202 (2008)

    Article  MATH  Google Scholar 

  6. Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A., Wieman, C.E.: Stable \(^{85}\)Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000)

    Article  Google Scholar 

  7. Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A., Wieman, C.E.: Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295–299 (2001)

    Article  Google Scholar 

  8. Christiansen, P.L., Eilbeck, J.C., Enolskii, V.Z., Kostov, N.A.: Quasi-periodic and periodic solutions for coupled nonlinear Schrodinger equations of Manakov type. Proc. R. Soc. A: Math. Phys. Eng. Sci. 456, 2263–2281 (2001)

    Article  MathSciNet  Google Scholar 

  9. Eilbeck, J.C., Enolskii, V.Z., Kostov, N.A.: Quasiperiodic and periodic solutions for vector nonlinear Schrödinger equations. J. Math. Phys. 41(12), 8236–8248 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fibich, G., Papanicolaou, G.C.: Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension. SIAM J. Appl. Math. 60, 183–240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. García-Ripoll, J.J., Pérez-García, V.M., Torres, P.J.: Extended parametric resonances in nonlinear Schrödinger systems. Phys. Rev. Lett. 83(9), 1715–1718 (1999)

    Article  Google Scholar 

  12. Halk, R., Torres, P.J.: On periodic solutions of second-order differential equations with attractive-repulsive singularities. J. Differ. Equ. 248, 111–126 (2010)

    Article  Google Scholar 

  13. Halk, R., Torres, P.J.: A combined variational-topological approach for dispersion-managed solitons in optical fibers. Z. Angew. Math. Phys. 62, 245–266 (2011)

    Article  MathSciNet  Google Scholar 

  14. Itin, A., Morishita, T., Watanabe, S.: Reexamination of dynamical stabilization of matter-wave solitons. Phys. Rev. A 74(3), 033613 (2006)

    Article  Google Scholar 

  15. Kivshar, Y., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  16. Kunze, M.: Periodic solutions of a singular Lagrangian system related to dispersion-managed fiber communication devices. Nonlinear Dyn. Syst. Theory 1, 159–167 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Lidsey, J.E.: Scalar Field Cosmologies Hidden Within the Nonlinear Schrödinger Equation, arXiv:1309.7181, preprint

  18. Liu, Q., Qian, D.: Construction of modulated amplitude waves via averaging in collisionally inhomogeneous Bose-Einstein condensates. J. Nonlinear Math. Phys. 19(2), 1250017 (14 p.) (2012)

    Google Scholar 

  19. Liu, Q., Qian, D.: Modulated amplitude waves with nonzero phases in Bose-Einstein condensates. J. Math. Phys. 52, 082702 (2011)

    Article  MathSciNet  Google Scholar 

  20. Liu, Q., Qian, D.: Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients. Math. Methods Appl. Sci. 36(2), 227–233 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Magnus, W., Winkler, S.: Hill’s Equation. Dover, New York (1979)

    Google Scholar 

  22. Montesinos, G.D., Pérez-García, V.M., Torres, P.J.: Stabilization of solitons of the multidimensional nonlinear Schrödinger equation: matter-wave breathers. Phys. D 191, 193–210 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Montesinos, G.D., Torres, P.J., Pérez-García, V.M.: The method of moments for nonlinear Schrödinger equations: theory and applications. SIAM J. Appl. Math. 67(4), 990–1015 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. van Noort, M., Porter, M.A., Yi, Y., Chow, S.-N.: Quasiperiodic dynamics in Bose-Einstein condensates in periodic lattices and superlattices. J. Nonlinear Sci. 17(1), 59–83 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pérez-García, V.M., Torres, P., García-Ripoll, J.J., Michinel, H.: Moment analysis of paraxial propagation in a nonlinear graded index fibre. J. Opt. B: Quantum Semiclass. Opt. 2, 353–358 (2000)

    Article  Google Scholar 

  26. Porter, M.A., Cvitanović, P.: Modulated amplitude waves in Bose-Einstein condensates. Phys. Rev. E 69, 047201 (2004)

    Article  Google Scholar 

  27. Porter, M.A., Kevrekidis, P.G.: Bose-Einstein condensates in super-lattices. SIAM J. Appl. Dyn. Syst. 4(4), 783–807 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Torres, P.J.: Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem. J. Differ. Equ. 190, 643–662 (2003)

    Article  MATH  Google Scholar 

  29. Torres, P.J.: Modulated amplitude waves with non-trivial phase in quasi-1D inhomogeneous Bose-Einstein condensates. Phys. Lett. A 378(45), 3285–3288 (2014). doi:10.1016/j.physleta.2014.10.008

  30. Turitsyn, S.K., Shapiro, E.G.: Variational approach to the design of optical communication systems with dispersion management. Opt. Fiber Technol. 4, 145–161 (2003)

    Google Scholar 

  31. Turitsyn, S.K., Gabitov, I., Laedke, E.W., Mezentsev, V.K., Musher, S.L., Shapiro, E.G., Schäfer, T., Spatschek, K.H.: Variational approach to optical pulse propagation indispersion compensated transmission systems. Opt. Commun. 151, 117–135 (1998)

    Article  Google Scholar 

  32. Turitsyn, S.K., Shapiro, E.G., Medvedev, S.B., Fedoruk, M.P., Mezentsev, V.K.: Physics and mathematics of dispersion-managed optical solitons. C. R. Phys. 4, 145–161 (2003)

    Article  Google Scholar 

  33. Zhang, M.: The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials. J. Lond. Math. Soc. 64, 125–143 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Torres .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Atlantis Press and the authors

About this chapter

Cite this chapter

Torres, P.J. (2015). Bose-Einstein Condensates and Signal Transmission in Optical Fibers. In: Mathematical Models with Singularities. Atlantis Briefs in Differential Equations, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-106-2_5

Download citation

Publish with us

Policies and ethics