Skip to main content

Confined Aqueous Media for the Cleaning of Cultural Heritage: Innovative Gels and Amphiphile-Based Nanofluids

  • Chapter
  • First Online:
Nanoscience and Cultural Heritage

Abstract

This chapter presents the applicative potentialities of gels for the cleaning of artworks surfaces. In particular, innovative physical and chemical gels, with high water retention capability, high responsiveness to external stimuli, and suitable mechanical properties, are described. The high solvent retention capability and the specific mechanical properties of these gels allow the safe cleaning of artifacts, even including water-sensitive substrates. In fact, the cleaning action is limited to the contact surface, and the complete removal of soil is achieved while avoiding solvent spreading and absorption within the substrate. In particular, the use of gels based on semi-interpenetrating (IPN) polymer networks provides great advantages because these gels are able to load water-based detergent systems, such as micellar solutions and microemulsions, which are effective in removing synthetic adhesives and highly hydrophobic detrimental materials. The combination of semi-IPN polymer networks with these detergents allows the cleaning of sensitive substrates such as canvas paintings and manuscripts.

Michele Baglioni, Piero Baglioni: No kinship exists among these authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemán JV, Chadwick AV, He J et al (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem. doi:10.1351/pac200779101801

    Google Scholar 

  • Almdal K, Dyre J, Hvidt S, Kramer O (1993) Towards a phenomenological definition of the term “gel”. Polym Gels Netw 1:5–17. doi:10.1016/0966-7822(93)90020-I

    Article  CAS  Google Scholar 

  • Angelova LV, Terech P, Natali I et al (2011) Cosolvent gel-like materials from partially hydrolyzed poly(vinyl acetate)s and borax. Langmuir ACS J Surf Colloids 27:11671–11682. doi:10.1021/la202179e

    Article  CAS  Google Scholar 

  • Arnott S, Fulmer A, Scott WE et al (1974) The agarose double helix and its function in agarose gel structure. J Mol Biol 90:269–284. doi:10.1016/0022-2836(74)90372-6

    Article  CAS  Google Scholar 

  • Baglioni P, Chelazzi D (2013) Nanoscience for the conservation of works of art. Royal Society of Chemistry

    Google Scholar 

  • Baglioni M, Rengstl D, Berti D et al (2010) Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale. Nanoscale 2:1723. doi:10.1039/c0nr00255k

    Article  CAS  Google Scholar 

  • Baglioni M, Giorgi R, Berti D, Baglioni P (2012) Smart cleaning of cultural heritage: a new challenge for soft nanoscience. Nanoscale 4:42. doi:10.1039/c1nr10911a

    Article  CAS  Google Scholar 

  • Baglioni M, Raudino M, Berti D et al (2014a) Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from polymer contaminants. Soft Matter 10:6798–6809. doi:10.1039/C4SM01084A

    Article  CAS  Google Scholar 

  • Baglioni P, Chelazzi D, Giorgi R (2014b) Nanotechnologies in the conservation of cultural heritage: a compendium of materials and techniques. Springer, Berlin

    Google Scholar 

  • Baglioni M, Jàidar Benavides Y, Berti D et al (2015) An amine-oxide surfactant-based microemulsion for the cleaning of works of art. J Colloid Interface Sci 440:204–210. doi:10.1016/j.jcis.2014.10.003

    Article  CAS  Google Scholar 

  • Banik G, Cremonesi P, de la Chappelle A, Montalbano L (2003) Nuove metodologie nel resaturo del materiale cartaceo. Il Prato, Padova

    Google Scholar 

  • Bonini M, Lenz S, Giorgi R, Baglioni P (2007) Nanomagnetic sponges for the cleaning of works of art. Langmuir 23:8681–8685. doi:10.1021/la701292d

    Article  CAS  Google Scholar 

  • Bonini M, Lenz S, Falletta E et al (2008) Acrylamide-based magnetic nanosponges: a new smart nanocomposite material. Langmuir 24:12644–12650. doi:10.1021/la802425k

    Article  CAS  Google Scholar 

  • Borgioli L, Caminati G, Gabrielli G, Ferroni E (1995) Removal of hydrophobic impurities from pictorial surfaces by means of heterogeneous systems. Sci Technol Cult Herit J 4:67–74

    Google Scholar 

  • Burnstock A, Kieslich T (1996) A study of the clearance of solvent gels used for varnish removal from paintings. James & James, London, pp 253–262

    Google Scholar 

  • Burnstock A, White R (2000) A preliminary assessment of the aging/degradation of Ethomeen C-12 residues from solvent gel formulations and their potential for inducing changes in resinous paint media

    Google Scholar 

  • Burnstock A, Learner T, Learner T, Learner T (1992) Changes in the surface characteristics of artificially aged mastic varnishes after cleaning using alkaline reagents. Stud Conserv 37:165–184

    CAS  Google Scholar 

  • Carretti E, Dei L, Miliani C, Baglioni P (2001) Oil-in-water microemulsions to solubilize acrylic copolymers: application in cultural heritage conservation. In: Koutsoukos PPG (ed) Trends in colloid and interface science XV. Springer, Berlin, pp 63–67

    Chapter  Google Scholar 

  • Carretti E, Dei L, Baglioni P (2003a) Solubilization of acrylic and vinyl polymers in nanocontainer solutions. application of microemulsions and micelles to cultural heritage conservation. Langmuir 19:7867–7872. doi:10.1021/la034757q

    Article  CAS  Google Scholar 

  • Carretti E, Dei L, Baglioni P, Weiss RG (2003b) Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant. J Am Chem Soc 125:5121–5129. doi:10.1021/ja034399d

    Article  CAS  Google Scholar 

  • Carretti E, Dei L, Macherelli A, Weiss RG (2004) Rheoreversible polymeric organogels: the art of science for art conservation. Langmuir ACS J Surf Colloids 20:8414–8418. doi:10.1021/la0495175

    Article  CAS  Google Scholar 

  • Carretti E, Dei L, Weiss RG (2005) Soft matter and art conservation. Rheoreversible gels and beyond. Soft Matter 1:17–22. doi:10.1039/b501033k

    Article  CAS  Google Scholar 

  • Carretti E, Giorgi R, Berti D, Baglioni P (2007) Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies. Langmuir 23:6396–6403. doi:10.1021/la700487s

    Article  CAS  Google Scholar 

  • Carretti E, Dei L, Weiss RG, Baglioni P (2008) A new class of gels for the conservation of painted surfaces. J Cult Herit 9:386–393. doi:10.1016/j.culher.2007.10.009

    Article  Google Scholar 

  • Carretti E, Grassi S, Cossalter M et al (2009) Poly(vinyl alcohol)—borate hydro/cosolvent gels: viscoelastic properties, solubilizing power, and application to art conservation. Langmuir 25:8656–8662. doi:10.1021/la804306w

    Article  CAS  Google Scholar 

  • Carretti E, Bonini M, Dei L et al (2010a) New frontiers in materials science for art conservation: responsive gels and beyond. Acc Chem Res 43:751–760. doi:10.1021/ar900282h

    Article  CAS  Google Scholar 

  • Carretti E, Natali I, Matarrese C et al (2010b) A new family of high viscosity polymeric dispersions for cleaning easel paintings. J Cult Herit 11:373–380. doi:10.1016/j.culher.2010.04.002

    Article  Google Scholar 

  • Casoli A, Di Diego Z, Isca C (2014) Cleaning painted surfaces: evaluation of leaching phenomenon induced by solvents applied for the removal of gel residues. Environ Sci Pollut Res Int 21:13252–13263. doi:10.1007/s11356-014-2658-5

    Article  CAS  Google Scholar 

  • Chevalier A, Chelazzi D, Baglioni P et al (2008) Extraction d’adhésifs de rentoilage en peinture de chevalet: nouvelle approche. Allied Publishers, New Delhi, pp 581–589

    Google Scholar 

  • Cosgrove T (2010) Colloid science: principles, methods and applications. Wiley, London

    Google Scholar 

  • Cremonesi P (2006) Applicazione di metodologie di intervento più recenti per la pulitura del materiale cartaceo. In: Atti delle giornate di studio Problemi di Restauro. Il Prato, pp 39–46

    Google Scholar 

  • Danielsson I, Lindman B (1981) The definition of microemulsion. Colloids Surf 3:391–392. doi:10.1016/0166-6622(81)80064-9

    Article  CAS  Google Scholar 

  • Djabourov M, Nishinari K, Ross-Murphy SB (2013) Physical gels from biological and synthetic polymers. Cambridge University Press, Cambridge

    Google Scholar 

  • Domingues JAL, Bonelli N, Giorgi R et al (2013) Innovative hydrogels based on semi-interpenetrating p(HEMA)/PVP networks for the cleaning of water-sensitive cultural heritage artifacts. Langmuir 29:2746–2755. doi:10.1021/la3048664

    Article  CAS  Google Scholar 

  • Domingues J, Bonelli N, Giorgi R, Baglioni P (2014) Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Appl Phys A 114:705–710. doi:10.1007/s00339-013-8150-0

    Article  CAS  Google Scholar 

  • Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley, London

    Google Scholar 

  • Fanun M (2008) Microemulsions: properties and applications. CRC Press, Boca Raton

    Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Giorgi R, Baglioni M, Berti D, Baglioni P (2010) New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Acc Chem Res 43:695–704. doi:10.1021/ar900193h

    Article  CAS  Google Scholar 

  • Goldberg LA (1989) A fresh face for Samuel Gompers: methyl cellulose poultice cleaning. J Am Inst Conserv 28:19–29. doi:10.1179/019713689806046228

    Article  Google Scholar 

  • Gorel F (2010) Assessment of agar gel loaded with micro-emulsion for the cleaning of porous surfaces

    Google Scholar 

  • Grassi S, Favaro M, Tomasin P, Dei L (2009) Nanocontainer aqueous systems for removing polymeric materials from marble surfaces: a new and promising tool in cultural heritage conservation. J Cult Herit 10:347–355. doi:10.1016/j.culher.2008.10.003

    Article  Google Scholar 

  • Gulotta D, Saviello D, Gherardi F et al (2014) Setup of a sustainable indoor cleaning methodology for the sculpted stone surfaces of the Duomo of Milan. Herit Sci 2:1–13. doi:10.1186/2050-7445-2-6

    Article  Google Scholar 

  • Hermans PH (1949) Gels. In: Kruyt HR (ed) Colloid science. Elsevier Publishing Company, Amsterdam, pp 483–651

    Google Scholar 

  • Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, London

    Google Scholar 

  • Khandekar N, Phenix A, Sharp J (1994) Pilot study into the effects of solvents on artificially aged egg tempera films. Conservator 18:62–72. doi:10.1080/01410096.1994.9995086

    Article  Google Scholar 

  • Kopeček J, Yang J (2007) Hydrogels as smart biomaterials. Polym Int 56:1078–1098. doi:10.1002/pi.2253

    Article  Google Scholar 

  • Langevin D (1988) Microemulsions. Acc Chem Res 21:255–260. doi:10.1021/ar00151a001

    Article  CAS  Google Scholar 

  • Laughlin RG (1994) The aqueous phase behavior of surfactants. Academic Press, London

    Google Scholar 

  • Lloyd DJ (1926) The problem of gel structure. In: Alexander J (ed) Colloid chemistry: theoretical and applied. The Chemical Catalogue Company, New York, pp 767–782

    Google Scholar 

  • LoNostro P, Choi S-M, Ku C-Y, Chen S-H (1999) Fluorinated microemulsions: a study of the phase behavior and structure. J Phys Chem B 103:5347–5352. doi:10.1021/jp9827025

    Article  CAS  Google Scholar 

  • Mao R, Tang J, Swanson BG (2001) Water holding capacity and microstructure of gellan gels. Carbohydr Polym 46:365–371. doi:10.1016/S0144-8617(00)00337-4

    Article  CAS  Google Scholar 

  • Marchiafava V, Bartolozzi G, Cucci C, et al (2014) Colour measurements for monitoring the conservation of contemporary artworks

    Google Scholar 

  • Mazzuca C, Micheli L, Cervelli E et al (2014) Cleaning of paper artworks: development of an efficient gel-based material able to remove starch paste. ACS Appl Mater Interfaces 6:16519–16528. doi:10.1021/am504295n

    Article  CAS  Google Scholar 

  • Micheli L, Mazzuca C, Cervelli E, Palleschi A (2014) New strategy for the cleaning of paper artworks: a smart combination of gels and biosensors. Adv Chem 2014:e385674. doi:10.1155/2014/385674

    Article  Google Scholar 

  • Mitchell DJ, Ninham BW (1981) Micelles, vesicles and microemulsions. J Chem Soc Faraday Trans 2 Mol Chem Phys 77:601–629. doi:10.1039/F29817700601

    Article  CAS  Google Scholar 

  • Natali I, Carretti E, Angelova L et al (2011) Structural and mechanical properties of “peelable” organoaqueous dispersions with partially hydrolyzed Poly(vinyl acetate)-Borate networks: applications to cleaning painted surfaces. Langmuir 27:13226–13235. doi:10.1021/la2015786

    Article  CAS  Google Scholar 

  • Phenix A, Sutherland K (2001) The cleaning of paintings: effects of organic solvents on oil paint films. Rev Conserv 2:47–60

    CAS  Google Scholar 

  • Pizzorusso G, Fratini E, Eiblmeier J et al (2012) Physicochemical characterization of acrylamide/bisacrylamide hydrogels and their application for the conservation of easel paintings. Langmuir 28:3952–3961. doi:10.1021/la2044619

    Article  CAS  Google Scholar 

  • Qiu Z, Texter J (2008) Ionic liquids in microemulsions. Curr Opin Colloid Interface Sci 13:252–262. doi:10.1016/j.cocis.2007.10.005

    Article  CAS  Google Scholar 

  • Robinson BH (2003) Self-assembly. IOS Press

    Google Scholar 

  • Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. In: Dušek K (ed) Polymer networks. Springer, Berlin, pp 103–158

    Chapter  Google Scholar 

  • Stavroudis C, Doherty T, Wolbers R (2005) A new approach to cleaning i: using mixtures of concentrated stock solutions and a database to arrive at an optimal aqueous cleaning system. WAAC Newsl 27:17–28

    Google Scholar 

  • Stockmayer WH (1944) Theory of molecular size distribution and gel formation in branched polymers II. General cross linking. J Chem Phys 12:125–131. doi:10.1063/1.1723922

    Article  CAS  Google Scholar 

  • Stubenrauch C (2008) Microemulsions: background, new concepts, applications, perspectives. Wiley, London

    Google Scholar 

  • Stulik D, Miller D, Khandekar N et al (2004) Solvent gels for the cleaning of works of art: the residue question. Getty Publications, Los Angeles

    Google Scholar 

  • Takahashi R, Akutu M, Kubota K, Nakamura K (1999) Characterization of gellan gum in aqueous NaCl solution. In: Nishinari K (ed) Physical chemistry and industrial application of gellan gum. Springer, Berlin, pp 1–7

    Chapter  Google Scholar 

  • Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185:117–118. doi:10.1038/185117a0

    Article  Google Scholar 

  • Wolbers R (2000) Cleaning painted surfaces: aqueous methods. Archetype, London

    Google Scholar 

  • Wolbers R, Sterman N, Stavroudis C (1988) Notes for the workshop on new methods in the cleaning of paintings. The Getty Conservation Institute, Marina del Rey

    Google Scholar 

  • Zallen R (1983) The physics of amorphous solids. Wiley, New York

    Book  Google Scholar 

  • Zana R (1987) Surfactant solutions: new methods of investigation. M. Dekker

    Google Scholar 

Download references

Acknowledgments

Aurelia Chevalier is acknowledged for her help in the assessment of acrylamide-based hydrogels for the removal of polymeric coatings from relining canvases. Florence Gorel is acknowledged for the preparation of samples for the assessment of p(HEMA)/PVP hydrogels. Vittoria Castoldi and Luciano Formica (Studio Restauri Formica s.r.l.) are gratefully acknowledged for giving us the opportunity to test the nanofluid-loaded hydrogels on an extremely interesting conservation case. Patrizia Buratti (Studio Restauri Formica s.r.l.) is acknowledged for the assistance during the cleaning test on the painting by E. Castellani. This work was partly funded by NANOFORART—Nano-materials for the conservation and preservation of movable and immovable artworks, FP7-NMP European project (http://www.nanoforart.eu) and NANORESTART—NANOmaterials for the REStoration of works of ART, EU programme Horizon 2020 (www.nanorestart.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Baglioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Bonelli, N., Chelazzi, D., Baglioni, M., Giorgi, R., Baglioni, P. (2016). Confined Aqueous Media for the Cleaning of Cultural Heritage: Innovative Gels and Amphiphile-Based Nanofluids. In: Dillmann, P., Bellot-Gurlet, L., Nenner, I. (eds) Nanoscience and Cultural Heritage. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-198-7_10

Download citation

Publish with us

Policies and ethics