Skip to main content

Evolution of Sirtuins From Archaea to Vertebrates

  • Chapter
Histone Deacetylases

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Most eukaryotic sirtuins (sir2-like proteins) can be grouped into four classes. In deuterostomes such as vertebrates, the urochordate sea squirt Ciona, and the echinoderm sea urchin Strongylocentrotus, there are seven sirtuins. Class I includes SIRT1, SIRT2, and SIRT3. SIRT4 is in class II and SIRT5 is in class III. Class IV includes SIRT6 and SIRT7. Fish have two SIRT5 orthologs while most other vertebrates have only one version of each of the seven sirtuins. Arthropods lack SIRT3, and some arthropods (e.g., Drosophila) lack SIRT5, but other arthropods have SIRT1, SIRT2, SIRT4, SIRT5, SIRT6, and SIRT7. Most prokaryotic sirtuins can be grouped into three categories: the same class II and class III categories as seen in eukaryotes, and a class U, which could be the precursor of the eukaryotic class I and class IV sirtuins. A model is proposed in which the first eukaryote (which resulted from the engulfment of an α-proteobacterium by an archaean) received a class III sirtuin from the archaean parent, while the class II sirtuin and a class U sirtuin came from the α-proteobacterium parent. While most eukaryotic class III sirtuins appear to be derived from an archaeal class III sirtuin, the Kinetoplastida (Leishmania and Trypanosoma) have a class III sirtuin gene that appears to be of γ-proteobacterial origin, possibly an example of lateral gene transfer. The seven mammalian sirtuins are aligned and contrasted with sirtuins from diverse eukaryotic and prokaryotic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Afum:

Aspergillus fumigatus Filamentous fungus

Anid:

Aspergillus nidulans Filamentous fungus

Atha:

Arabidopsis thaliana Green plant

Bjap:

Bradyrhizobium japonicum α -Proteobacterium

Bmor:

Bombyx mori Silk moth

Btau:

Bos taurus Cow

Cbri:

Caenorhabditis briggsae Nematode worm

Cele:

Caenorhabditis elegans Nematode worm

Cint:

Ciona intestinalis Sea squirt (urochordate)

Cmer:

Cyanidioschyzon merolae Red algae

Csav:

Ciona savignyi Sea squirt (urochordate)

Ddis:

Dictyostelium discoideum &quote;Slime mold&quote;

Dmel:

Drosophila melanogaster Fruitfly

Drer:

Danio rerio Zebrafish

Ggal:

Gallus gallus Chicken

Hsap:

Homo sapiens Human

Mbur:

Methanococcoides burtonii Archaean

Mmus:

Mus musculus Mouse

Phor:

Pyrococcus horikoshii Archaean

Pmul:

Pasteurella multocida γ -Proteobacterium

Ppat:

Physcomitrella patens Green plant (moss)

Rnor:

Rattus norvegicus Rat

Scer:

Saccharomyces cerevisiae Fungus (brewer’s yeast)

Sman:

Schistosoma mansoni Trematode worm

Spom:

Schizosaccharomyces pombe Fungus (fission yeast)

Spur:

Strongylocentrotus purpuratus Sea urchin (echinoderm)

Sscr:

Sus scrofa Pig

Styp:

Salmonella typhimurium γ -Proteobacterium

Tcru:

Trypanosoma cruzi Trypanosome

Tmar:

Thermotoga maritima Early eubacterium

Ylip:

Yarrowia lipolytica Fungus (yeast)

Xlae:

Xenopus laevis Frog (tetraploid genome)

Xtro:

Xenopus tropicalis Frog (diploid genome)

References

  1. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793–798.

    Article  PubMed  CAS  Google Scholar 

  2. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260: 273–279.

    Article  PubMed  CAS  Google Scholar 

  3. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403:795–800.

    Article  PubMed  CAS  Google Scholar 

  4. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000;14:1021–1026.

    PubMed  CAS  Google Scholar 

  5. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289:2126–2128.

    Article  PubMed  CAS  Google Scholar 

  6. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001;410:227–230.

    Article  PubMed  CAS  Google Scholar 

  7. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011–2015.

    Article  PubMed  CAS  Google Scholar 

  8. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004;1 16:551–563.

    Article  Google Scholar 

  9. Van Der Horst A, Tertoolen LG, De Vries-Smits LM, Frye RA, Medema RH, Burgering BM. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2SIRT1. J Biol Chem 2004.

    Google Scholar 

  10. Daitoku H, Hatta M, Matsuzaki H, et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 2004.

    Google Scholar 

  11. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004.

    Google Scholar 

  12. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002;21:2383–2396.

    Article  PubMed  CAS  Google Scholar 

  13. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11:437–444.

    Article  PubMed  CAS  Google Scholar 

  14. Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 2002;158:647–657.

    Article  PubMed  CAS  Google Scholar 

  15. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 2002;99:13,653–13,658.

    Article  PubMed  CAS  Google Scholar 

  16. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily Conserved and Nonconserved Cellular Localizations and Functions of Human SIRT Proteins. Mol Biol Cell 2005;16:4623–4635.

    Article  PubMed  CAS  Google Scholar 

  17. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000;290:972–977.

    Article  PubMed  CAS  Google Scholar 

  18. Baldauf SL. The deep roots of eukaryotes. Science 2003;300:1703–1706.

    Article  PubMed  CAS  Google Scholar 

  19. Keeling PJ, Doolittle WF. Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. Proc Natl Acad Sci U S A 1997;94:1270–1275.

    Article  PubMed  CAS  Google Scholar 

  20. Martin W, Muller M. The hydrogen hypothesis for the first eukaryote. Nature 1998;392:37–41.

    Article  PubMed  CAS  Google Scholar 

  21. Rotte C, Henze K, Muller M, Martin W. Origins of hydrogenosomes and mitochondria. Curr Opin Microbiol 2000;3:481–486.

    Article  PubMed  CAS  Google Scholar 

  22. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001;107:137–148.

    Article  PubMed  CAS  Google Scholar 

  23. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149–159.

    Article  PubMed  CAS  Google Scholar 

  24. Senawong T, Peterson VJ, Avram D, et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 2003; 278:43, 041–43,050.

    Google Scholar 

  25. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003;12:51–62.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004;13:627–638.

    Article  PubMed  CAS  Google Scholar 

  27. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–776.

    Article  PubMed  CAS  Google Scholar 

  28. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23: 2369–2380.

    Article  PubMed  CAS  Google Scholar 

  29. Achenbach-Richter L, Gupta R, Stetter KO, Woese CR. Were the original eubac-teria thermophiles? Syst Appl Microbiol 1987;9:34–39.

    PubMed  CAS  Google Scholar 

  30. Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003;23:3173–3185.

    Article  PubMed  CAS  Google Scholar 

  31. Palazzo A, Ackerman B, Gundersen GG. Cell biology: tubulin acetylation and cell motility. Nature 2003;421:230.

    Article  PubMed  CAS  Google Scholar 

  32. Schneider A, Plessmann U, Felleisen R, Weber K. Posttranslational modifications of trichomonad tubulins; identification of multiple glutamylation sites. FEBS Lett 1998;429:399–402.

    Article  PubMed  CAS  Google Scholar 

  33. Noel C, Gerbod D, Fast NM, et al. Tubulins in Trichomonas vaginalis: molecular characterization of alpha-tubulin genes, posttranslational modifications, and homology modeling of the tubulin dimer. J Eukaryot Microbiol 2001;48: 647–654.

    Article  PubMed  CAS  Google Scholar 

  34. Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003;38:1065–1070.

    Article  PubMed  CAS  Google Scholar 

  35. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002;298:2390–2392.

    Article  PubMed  CAS  Google Scholar 

  36. Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 2003;163:545–555.

    PubMed  CAS  Google Scholar 

  37. Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005;280:21,313–21,320.

    Article  PubMed  CAS  Google Scholar 

  38. de Nigris F, Cerutti J, Morelli C, et al. Isolation of a SIR-like gene, SIR-T8, that is overexpressed in thyroid carcinoma cell lines and tissues. Br J Cancer 2002;86:917–923.

    Article  PubMed  Google Scholar 

  39. Frye R. &quote;SIRT8&quote; expressed in thyroid cancer is actually SIRT7. Br J Cancer 2002;87:1479.

    Article  PubMed  CAS  Google Scholar 

  40. Furuyama T, Banerjee R, Breen TR, Harte PJ. SIR2 is required for polycomb silencing and is associated with an E(Z) histone methyltransferase complex. Curr Biol 2004;14:1812–1821.

    Article  PubMed  CAS  Google Scholar 

  41. Kuzmichev A, Margueron R, Vaquero A, et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci U S A 2005;102:1859–1864.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Frye, R.A. (2006). Evolution of Sirtuins From Archaea to Vertebrates. In: Verdin, E. (eds) Histone Deacetylases. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-024-3:183

Download citation

Publish with us

Policies and ethics