Skip to main content

Hypocretin as a Wakefulness Regulatory Peptide

  • Chapter
The Orexin/Hypocretin System

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 985 Accesses

Abstract

In the past few years, the hypocretins (also known as orexins) have been shown to be critical components of the brain circuitry that modulates the states of vigilance (13). Recent advances are yielding a clearer picture as to the mechanism of action of these peptides and how they control multiple circuits to produce a coherent behavioral output. Here we review the interactions of the hypocretinergic system with major neurotransmitter networks and discuss the role of the neurons that contain hypocretin in integrating information that dictates the state of arousal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mignot, E., Taheri, S., and Nishino, S. (2002) Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat. Neurosci. 5(suppl), 1071–1075.

    Article  PubMed  CAS  Google Scholar 

  2. Willie, J.T., Chemelli, R.M., Sinton, C.M., and Yanagisawa, M. (2001) To eat or to sleep? orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 24, 429–458.

    Article  PubMed  CAS  Google Scholar 

  3. Sutcliffe, J.G. and de Lecea, L. (2002) The hypocretins: setting the arousal threshold. Nat. Rev. Neurosci. 3, 339–349.

    Article  PubMed  CAS  Google Scholar 

  4. Gautvik, K.M., de Lecea, L., Gautvik, V.T., et al. (1996) Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc. Natl. Acad. Sci. U S A 93, 8733–8738.

    Article  PubMed  CAS  Google Scholar 

  5. de Lecea, L., Kilduff, T.S., Peyron, C., et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. U S A 95, 322–327.

    Article  PubMed  Google Scholar 

  6. Lee, J.H., Bang, E., Chae, K.J., Kim, J.Y., Lee, D.W., and Lee, W. (1999) Solution structure of a new hypothalamic neuropeptide, human hypocretin-2/orexin-B [In Process Citation]. Eur. J. Biochem. 266, 831–839.

    Article  PubMed  CAS  Google Scholar 

  7. Peyron, C., Tighe, D.K., van den Pol, A.N., et al. (1998) Neurons containing hypocretin (Orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10,015.

    PubMed  CAS  Google Scholar 

  8. van den Pol, A.N., Gao, X.B., Obrietan, K., Kilduff, T.S., and Belousov, A.B. (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J. Neurosci. 18, 7962–7971.

    PubMed  Google Scholar 

  9. Sakurai, T., Amemiya, A., Ishii, M., et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.

    Google Scholar 

  10. Marcus, J.N., Aschkenasi, C.J., Lee, C.E., et al. (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25.

    Article  PubMed  CAS  Google Scholar 

  11. Peyron, C., Faraco, J., Rogers, W., et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997.

    Article  PubMed  CAS  Google Scholar 

  12. Thannickal, T.C., Moore, R.Y., Nienhuis, R., et al. (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron. 27, 469–474.

    Article  PubMed  CAS  Google Scholar 

  13. Bourgin, P., Huitrón-Reséndiz, S., Spier, A., et al. (2000) Hypocretin-1 modulates REM sleep through activation of locus coeruleus neurons. J. Neurosci. 20, 7760–7765.

    PubMed  CAS  Google Scholar 

  14. Hagan, J.J., Leslie, R.A., Patel, S., et al. (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. U S A 96, 10,911–10,916.

    Article  PubMed  CAS  Google Scholar 

  15. Pace-Schott, E.F. and Hobson, J.A. (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 3, 591–605.

    PubMed  CAS  Google Scholar 

  16. Horvath, T.L., Peyron, C., Diano, S., et al. (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol. 415, 145–159.

    Article  PubMed  CAS  Google Scholar 

  17. Aston-Jones, G., Chen, S., Zhu, Y., and Oshinsky, M.L. (2001) A neural circuit for circadian regulation of arousal. Nat. Neurosci. 4, 732–738.

    Article  PubMed  CAS  Google Scholar 

  18. Abrahamson, E.E., Leak, R.K., and Moore, R.Y. (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435–440.

    Article  PubMed  CAS  Google Scholar 

  19. Li, Y., Gao, X.B., Sakurai, T., and van den Pol, A.N. (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36, 1169–1181.

    Article  PubMed  CAS  Google Scholar 

  20. Steriade, M. and Llinas, R.R. (1998) The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68, 649–742.

    Google Scholar 

  21. Jones, B.E. (1991) The role of noradrenergic locus coeruleus neurons and neighboring cholinergic neurons of the pontomesencephalic tegmentum in sleep-wake states. Prog. Brain Res. 88, 533–543.

    Article  PubMed  CAS  Google Scholar 

  22. Trivedi, P., Yu, H., MacNeil, D.J., Van der Ploeg, L.H., and Guan, X.M. (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 438, 71–75.

    Article  PubMed  CAS  Google Scholar 

  23. Greco, M.A. and Shiromani, P.J. (2001) Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res. Mol. Brain Res. 88, 176–182.

    Article  PubMed  CAS  Google Scholar 

  24. Burlet, S., Tyler, C.J., and Leonard, C.S. (2002) Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J. Neurosci. 22, 2862–2872.

    PubMed  CAS  Google Scholar 

  25. Takahashi, K., Koyama, Y., Kayama, Y., and Yamamoto, M. (2002) Effects of orexin on the laterodorsal tegmental neurones. Psychiatry Clin. Neurosci. 56, 335–336.

    Article  PubMed  CAS  Google Scholar 

  26. Xi, M., Morales, F.R., and Chase, M.H. (2001) Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 901, 259–264.

    Article  PubMed  CAS  Google Scholar 

  27. Elias, C.F., Saper, C.B., Maratos-Flier, E., et al. (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402, 442–459.

    Article  PubMed  CAS  Google Scholar 

  28. Broberger, C., de Lecea, L., Sutcliffe, J.G., and Hökfelt, T. (1998) Hypocretin/orexin-and melanin-concentrating hormone expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to neuropeptide Y innervation. J. Comp. Neurol. 402, 460–474.

    Article  PubMed  CAS  Google Scholar 

  29. Lopez, M., Seoane, L., Garcia, M.C., et al. (2000) Leptin regulation of prepro-orexin and orexin receptor mRNA levels in the hypothalamus. Biochem. Biophys. Res. Commun. 269, 41–45.

    Article  PubMed  CAS  Google Scholar 

  30. Cai, X.J., Widdowson, P.S., Harrold, J., et al (1999) Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 48, 2132–2137.

    Article  PubMed  CAS  Google Scholar 

  31. Yamanaka, A., Beuckmann, C.T., Willie, J.T., et al. (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 38, 701–713.

    Article  PubMed  CAS  Google Scholar 

  32. Wortley, K.E., Chang, G.Q., Davydova, Z., and Leibowitz, S.F. (2003) Peptides that regulate fodd intake orexin gene expression is increased during states of hypertriglyceridemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1454–R1465.

    PubMed  CAS  Google Scholar 

  33. Hara, J., Beuckmann, C.T., Nambu, T., et al. (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354.

    Article  PubMed  CAS  Google Scholar 

  34. Chou, T.C., Bjorkum, A.A., Gaus, S.E., Lu, J., Scammell, T.E., and Saper, C.B. (2002) Afferents to the ventrolateral preoptic nucleus. J. Neurosci. 22, 977–990.

    PubMed  CAS  Google Scholar 

  35. Chou, T.C., Scammell, T.E., Gooley, J.J., Gaus, S.E., Saper, C.B., and Lu, J. (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10,691–10,702.

    PubMed  CAS  Google Scholar 

  36. Huang, Z.L., Qu, W.M., Li, W.D., et al. (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. U S A 98, 9965–9970.

    Article  PubMed  CAS  Google Scholar 

  37. Espana, R.A., Baldo, B.A., Kelley, A.E., and Berridge, C.W. (2001) Wake-promoting and sleepsuppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106, 699–715.

    Article  PubMed  CAS  Google Scholar 

  38. Albanese, A. and Minciacchi, D. (1983) Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J. Comp. Neurol. 216, 406–420.

    Article  PubMed  CAS  Google Scholar 

  39. Wise, R.A. and Rompre, P.P. (1989) Brain dopamine and reward. Annu. Rev. Psychol. 40, 191–225.

    Article  PubMed  CAS  Google Scholar 

  40. Schultz, W. (1998) Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27.

    PubMed  CAS  Google Scholar 

  41. Wise, R.A. (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240.

    Article  PubMed  CAS  Google Scholar 

  42. Fadel, J. and Deutch, A.Y. (2002) Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111, 379–387.

    Article  PubMed  CAS  Google Scholar 

  43. Uramura, K., Funahashi, H., Muroya, S., Shioda, S., Takigawa, M., and Yada, T. (2001) Orexin-A activates phospholipase C-and protein kinase C-mediated Ca2+ signaling in dopamine neurons of the ventral tegmental area. Neuroreport 12, 1885–1889.

    Article  PubMed  CAS  Google Scholar 

  44. Korotkova, T.M., Sergeeva, O.A., Eriksson, K.S., Haas, H.L., and Brown, R.E. (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci. 23, 7–11.

    PubMed  CAS  Google Scholar 

  45. Nakamura, T., Uramura, K., Nambu, T., et al. (2000) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res. 873, 181–187.

    Article  PubMed  CAS  Google Scholar 

  46. Martin, G., Fabre, V., Siggins, G.R., and de Lecea, L. (2002) Interaction of the hypocretins with neurotransmitters in the nucleus accumbens. Regul. Pept. 104, 111–117.

    Article  PubMed  CAS  Google Scholar 

  47. Date, Y., Mondal, M.S., Matsukura, S., et al. (2000) Distribution of orexin/hypocretin in the rat median eminence and pituitary. Brain Res. Mol. Brain Res. 76, 1–6.

    Article  PubMed  CAS  Google Scholar 

  48. Ida, T., Nakahara, K., Murakami, T., Hanada, R., Nakazato, M., and Murakami, N. Possible involvement of orexin in the stress reaction in rats. Biochem. Biophys. Res. Commun. 270, 318–323.

    Google Scholar 

  49. Samson, W.K., Gosnell, B., Chang, J.K., Resch, Z.T., and Murphy, T.C. (1999) Cardiovascular regulatory actions of the hypocretins in brain. Brain Res. 831, 248–253.

    Article  PubMed  CAS  Google Scholar 

  50. van den Pol, A.N. (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 19, 3171–3182.

    PubMed  Google Scholar 

  51. Shirasaka, T., Kunitake, T., Takasaki, M., and Kannan, H. (2002) Neuronal effects of orexins: relevant to sympathetic and cardiovascular functions. Regul. Pept. 104, 91–95.

    Article  PubMed  CAS  Google Scholar 

  52. Takahashi, N., Okumura, T., Yamada, H., and Kohgo, Y. (1999) Stimulation of gastric acid secretion by centrally administered orexin-A in conscious rats. Biochem. Biophys. Res. Commun. 254, 623–627.

    Article  PubMed  CAS  Google Scholar 

  53. Hajszan, T., Liposits, Z., and Zaborszky, L. (2002) Adrenergic input to the perifornical orexincontaining neurons in the rat. Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC. Online, Program No. 735.9.

    Google Scholar 

  54. Kuru, M., Ueta, Y., Serino, R., et al. (2000) Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport 11, 1977–1980.

    Article  PubMed  CAS  Google Scholar 

  55. Malendowicz, L.K., Tortorella, C., and Nussdorfer, G.G. (1999) Orexins stimulate corticosterone secretion of rat adrenocortical cells, through the activation of the adenylate cyclase-dependent signaling cascade. J. Steroid Biochem. Mol. Biol. 70, 185–188.

    Article  PubMed  CAS  Google Scholar 

  56. Stricker-Krongrad, A., Richy, S., and Beck, B. (2002) Orexins/hypocretins in the ob/ob mouse: hypothalamic gene expression, peptide content and metabolic effects. Regul. Pept. 104, 11–20.

    Article  PubMed  CAS  Google Scholar 

  57. Blanco, M., Garcia-Caballero, T., Fraga, M., et al. (2002) Cellular localization of orexin receptors in human adrenal gland, adrenocortical adenomas and pheochromocytomas. Regul. Pept. 104, 161–165.

    Article  PubMed  CAS  Google Scholar 

  58. Lopez, M., Senaris, R., Gallego, R., et al. (1999) Orexin receptors are expressed in the adrenal medulla of the rat. Endocrinology 140, 5991–5994.

    Article  PubMed  CAS  Google Scholar 

  59. Nanmoku, T., Isobe, K., Sakurai, T., et al. (2002) Effects of orexin on cultured porcine adrenal medullary and cortex cells. Regul. Pept. 104, 125–130.

    Article  PubMed  CAS  Google Scholar 

  60. Espana, R.A., Valentino, R.J., and Berridge, C.W. (2002) Fos expression in hypocretin-1 receptorbearing and hypocretin-synthesizing neurons: effects of diurnal and nocturnal waking, stress and hcrt-1 administration. Abstract Viewer/Itinerary Planner. Society for Neuroscience. Washington, DC. Program No. 776.5.

    Google Scholar 

  61. Samson, W.K. and Taylor, M.M. (2001). Hypocretin/orexin suppresses corticotroph responsiveness in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1140–R1145.

    PubMed  CAS  Google Scholar 

  62. Scammell, T.E. (2003) The neurobiology, diagnosis, and treatment of narcolepsy. Ann. Neurol. 53, 154–166.

    Article  PubMed  Google Scholar 

  63. Koyama, Y., Takahashi, K., Kodama, T., and Kayama, Y. (2003) State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking. Neuroscience 119, 1209–1219.

    Article  PubMed  CAS  Google Scholar 

  64. Alam, M.N., Gong, H., Alam, T., Jaganath, R., McGinty, D., and Szymusiak, R. (2002) Sleepwaking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J. Physiol. 538, 619–631.

    Article  PubMed  CAS  Google Scholar 

  65. Martinez, G.S., Smale, L., and Nunez, A.A. (2002) Diurnal and nocturnal rodents show rhythms in orexinergic neurons. Brain Res. 955, 1–7.

    Article  PubMed  CAS  Google Scholar 

  66. Estabrooke, I.V., McCarthy, M.T., Ko, E., et al. (2001) Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 21, 1656–1662.

    PubMed  CAS  Google Scholar 

  67. Espana, R.A., Plahn, S., and Berridge, C.W. (2002) Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin. Brain. Res. 943, 224–236.

    Article  PubMed  CAS  Google Scholar 

  68. Espana, R.A., Valentino, R.J., and Berridge, C.W. (2003) Fos immunoreactivity in hypocretinsynthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121, 201–217.

    Article  PubMed  CAS  Google Scholar 

  69. Eggermann, E., Bayer, L., Serafin, M., et al. (2003) The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization. J. Neurosci. 23, 1557–1562.

    PubMed  CAS  Google Scholar 

  70. Chemelli, R.M., Willie, J.T., Sinton, C.M., (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451.

    Article  PubMed  CAS  Google Scholar 

  71. Yoshida, Y., Fujiki, N., Nakajima, T., et al. (2001) Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur. J. Neurosci. 14, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  72. Taheri, S., Sunter, D., Dakin, C., et al. (2000) Diurnal variation in orexin A immunoreactivity and prepro-orexin mRNA in the rat central nervous system. Neurosci. Lett. 279, 109–112.

    Article  PubMed  CAS  Google Scholar 

  73. Terao, A., Peyron, C., Ding, J., et al. (2000) Prepro-hypocretin (prepro-orexin) expression is unaffected by short-term sleep deprivation in rats and mice. Sleep 23, 867–874.

    PubMed  CAS  Google Scholar 

  74. Willie, J.T., Chemelli, R.M., Sinton, C.M., et al. (2003) Distinct narcolepsy syndromes in orexin receptor-2 and Orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron. 38, 715–730.

    Article  PubMed  CAS  Google Scholar 

  75. Sherin, J.E., Shiromani, P.J., McCarley, R.W., and Saper, C.B. (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–219.

    Article  PubMed  CAS  Google Scholar 

  76. Aston-Jones, G., Rajkowski, J., and Cohen, J. (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry 46, 1309–1320.

    Article  PubMed  CAS  Google Scholar 

  77. Berridge, C.W. and Waterhouse, B.D. (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84.

    Article  PubMed  Google Scholar 

  78. Wedner, H.F., Hoffer, B.J., Battenberg, E.B., Steiner, A.L., Parker, C.W., and Bloom, F.E. (1972) A method for detecting intracellular cyclic adenosine monophosphate by immunofluorescence. J. Histochem. Cytochem. 20, 293–295.

    PubMed  CAS  Google Scholar 

  79. Brown, R.E., Sergeeva, O., Eriksson, K.S., and Haas, H.L. (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40, 457–459.

    Article  PubMed  CAS  Google Scholar 

  80. Bayer, L., Eggermann, E., Serafin, M., et al. (2001) Orexins (hypocretins) directly excite tuberomammillary neurons. Eur. J. Neurosci. 14, 1571–1575.

    Article  PubMed  CAS  Google Scholar 

  81. Lambe, E.K. and Aghajanian, G.K. (2003) Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron 40, 139–150.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

de Lecea, L., Sutcliffe, J.G. (2006). Hypocretin as a Wakefulness Regulatory Peptide. In: Nishino, S., Sakurai, T. (eds) The Orexin/Hypocretin System. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-950-8:141

Download citation

Publish with us

Policies and ethics