Skip to main content

Part of the book series: Orthopedic Biology and Medicine ((OBM))

Abstract

The history of artificial ligaments includes possibly more than its fair share of controversy and failures. One main task of this chapter is to review the history to extract the lessons that will be valuable for the future. Although artificial ligaments are presently unpopular, memories of previous disappointments inevitably fade, while at the same time, technology continues, opening up novel approaches to the problem. The second task of this chapter is to look to the future: is there a case for pursuing the development of artificial ligaments at all? If so, how might this be done for the errors of the past to be avoided?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Radford WJP, Amis AA, Heatley FW. Immediate strength after suturing the anterior cruciate ligament., J Bone Joint Surg Br 1994;76:480–484.

    PubMed  CAS  Google Scholar 

  2. Guirea M, Zorilla P, Amis AA, Aichroth P. Comparative pull out and cyclic loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 1999;27:621–625.

    Google Scholar 

  3. Butler DL, Grood ES, Noyes FR, et al. Mechanical properties of primate vascularized versus nonvascularized patellar tendon grafts; changes over time. J Orthop Res 1989;7:68–79.

    Article  PubMed  CAS  Google Scholar 

  4. Salehpour A, Butler DL, Proch FS, et al. Dose-dependent response of gamma irradiation on mechanical properties and related biochemical composition of goat bone-patellar tendon-bone allografts. J Orthop Res 1995;13:898–906.

    Article  PubMed  CAS  Google Scholar 

  5. Jackson DW, Grood ES, Goldstein J, et al. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 1993;21:176–185.

    Article  PubMed  CAS  Google Scholar 

  6. Jackson DW, Corsetti J, Simon TM. Biologic incorporation of allograft anterior cruciate ligament replacements. Clin Orthop 1996;324:126–133.

    Article  PubMed  Google Scholar 

  7. Morrison JB. Function of the knee joint in various activities. Biomed Eng 1969;4:573–580.

    PubMed  CAS  Google Scholar 

  8. Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med 1991;19:217–225.

    Article  PubMed  CAS  Google Scholar 

  9. Henze CW, Mayer L. An experimental study of silk-tendon plastics with particular reference to the prevention of post-operative adhesions. Surg Gynecol Obstet 1914;19:10–24.

    Google Scholar 

  10. Chen EH, Black, J. Materials design analysis of the prosthetic anterior cruciate ligament. J Biomed Mater Res 1980;14:567–586.

    Article  PubMed  CAS  Google Scholar 

  11. Vaughan LC. A study of the replacement of the anterior cruciate ligament in the dog by fascia, skin and Nylon. Vet Rec 1963;75:537–541.

    Google Scholar 

  12. Meyers JF, Grana WA, Lesker PA. Reconstruction of the anterior cruciate ligament in the dog: comparison of the results obtained with three different porous synthetic materials. Am J Sports Med 1979;7:85–90.

    Article  PubMed  CAS  Google Scholar 

  13. Leininger RI, Mirkovitch V, Peters A, Hawks WA. Change in properties of plastics during implantation. Trans Am Soc Artif Organ 1964;10:320–321.

    CAS  Google Scholar 

  14. Mendenhall HV, Roth JH, Kennedy JC, Winter GD, Lumb WV. Evaluation of the polypropylene braid as a prosthetic anterior cruciate ligament replacement in the dog. Am J Sports Med 1987;15:543–546.

    Article  PubMed  CAS  Google Scholar 

  15. Noyes FR, Barber SD. The effect of a ligament augmentation device on allograft reconstructions for chronic ruptures of the anterior cruciate ligament. J Bone Joint Surg Am 1992;74:960–973.

    PubMed  CAS  Google Scholar 

  16. Jenkins DHR, Forster IW, McKibbin B, Ralis ZA. Induction of tendon and ligament formation by carbon implants. J Bone Joint Surg Br 1977;59:53–57.

    PubMed  CAS  Google Scholar 

  17. Noyes FR, Grood ES. Strength of the anterior cruciate ligament in humans and rhesus monkeys: age and species-related changes. J Bone Joint Surg Am 1976;58:1074–1082.

    PubMed  CAS  Google Scholar 

  18. Jenkins DHR, McKibbin B. The role of flexible carbon fibre implants as tendon and ligament substitutes in clinical practice: a preliminary report. J Bone Joint Surg Br 1980;62:497–499.

    PubMed  Google Scholar 

  19. Amis AA, Kempson SA, Campbell JR, Miller JH. Anterior cruciate ligament implants: biocompatibility and biomechanics of polyester or carbon fibre implants in rabbits. J Bone Joint Surg 1988;70B:628–634.

    Google Scholar 

  20. Alexander H, Parsons JR, Strauchler ID, et al. Canine patellar tendon replacement with a polylactic acid polymer-filamentous carbon degrading scaffold to form new tissue. Orthop Rev 1981;10:41–51.

    Google Scholar 

  21. Amis AA, Campbell JR, Kempson SA, Miller JH. Comparison of the structure of neotendons induced by implantation of carbon or polyester fibres. Bone Joint Surg Br 1984;66;131–139.

    CAS  Google Scholar 

  22. Amis AA. The strength of artificial ligament anchorages—a comparative experimental study. J Bone Joint Surg Br 1988;70:397–403.

    PubMed  CAS  Google Scholar 

  23. Strover AE. Technical advances in the reconstruction of knee ligaments using carbon fibre. In Burri C, Claes L, eds. Alloplastic Ligament Replacement, Hans Huber, Bern, Switzerland, 1983, pp.127–134.

    Google Scholar 

  24. Rushton N, Dandy D, Naylor CPE. The clinical, arthroscopic and histological findings after replacement of the anterior cruciate ligament with carbon fibre. J Bone Joint Surg Br 1983;65:308–309.

    PubMed  CAS  Google Scholar 

  25. Charnley J. Total hip replacement by low-friction arthroplasty. Clin Orthop 1970;72:7–21.

    PubMed  CAS  Google Scholar 

  26. Butler HC. Teflon as a prosthetic ligament in repair of ruptured anterior cruciate ligaments. Am J Vet Res 1964;25:55–59.

    PubMed  CAS  Google Scholar 

  27. Bolton CW, Bruchman WC. The Gore-Tex expanded polytetrafluoroethylene prosthetic ligament: an in vitro and in vivo evaluation. Clin Orthop 1985;196:202–213.

    PubMed  CAS  Google Scholar 

  28. Paulos LE, Rosenberg TD, Grewe SR. The Gore-Tex anterior cruciate ligament prosthesis: a long-term follow-up. Am J Sports Med 1992;20:246–252.

    Article  PubMed  CAS  Google Scholar 

  29. Ferkel RD, Fox JM, Wood D, Del Pizzo W, Friedman MJ, Snyder SJ. Arthroscopic “second look” at the Gore-Tex ligament. Am J Sports Med 1989;17:147–153.

    Article  PubMed  CAS  Google Scholar 

  30. Hoffman AS. Medical applications of polymeric fibres. J Appl Polymer Sci Appl Polymer Symp 1977;31:313–314.

    CAS  Google Scholar 

  31. De Bakey ME, Jordan GL, Abbott JP, Halpert B, O’Neal R. The fate of Dacron vascular grafts. Arch Surg 1964;89:757–782.

    Google Scholar 

  32. Murray GAW, Semple JC. A review of work on artificial tendons. J Biomed Eng 1979;1:177–184.

    Article  PubMed  CAS  Google Scholar 

  33. Levine SN. Survey of biomedical materials and some relevant problems. Ann NY Acad Sci 1968;146:3–10.

    Article  PubMed  CAS  Google Scholar 

  34. King RN, Dunn HK, Bolstad KE. A single unit digital flexor tendon prosthesis. J Biomed Mater Res Symp 1975;6:157–165.

    Article  Google Scholar 

  35. King RN, McKenna GB, Statton WO. Novel uses of fibers as tendons and bones. J Appl Polymer Sci Appl Polymer Symp 1977;31:335–350.

    CAS  Google Scholar 

  36. Hinko PJ. The use of a prosthetic ligament in repair of the torn anterior cruciate ligament in the dog. J Am Animal Hosp Assoc 1981;17:563–567.

    Google Scholar 

  37. Park JP, Grana WA, Chitwood JS. A high-strength Dacron augmentation for cruciate ligament reconstruction: a two-year canine study. Clin Orthop 1985;196:175–185.

    PubMed  Google Scholar 

  38. Claes L, Durselen L, Kiefer H, Mohr W. The combined anterior cruciate and medial collateral ligament replacement by various materials: a comparative animal study. J Biomed Mater Res 1987;21:319–343.

    PubMed  CAS  Google Scholar 

  39. Lyman DJ. Biomedical polymers. Ann NY Acad Sci 1968;146:30–48.

    Article  PubMed  CAS  Google Scholar 

  40. Skelton J. Textiles in biomedical devices—some unrecognised variables. Biomater Med Devices Art if Organs 1974;2:345–352.

    CAS  Google Scholar 

  41. Amis AA, Camburn M, Kempson SA, Radford WJP, Stead AC. Anterior cruciate ligament replacement with polyester fibre—a long term study of tissue reactions and joint stability in sheep. J Bone Joint Surg Br 1992;74:605–613.

    PubMed  CAS  Google Scholar 

  42. Amis AA, Campbell JR, Miller JH. Strength of carbon and polyester fibre tendon replacements—variation after operation in rabbits J Bone Joint Surg Br 1985;67:829–34.

    PubMed  CAS  Google Scholar 

  43. Amis AA, Kempson SA, Hukkanen M. Polyester fiber ACL implants—will they form new ligaments in-vivo? Trans Orthop Res Soc 1994;40:617.

    Google Scholar 

  44. L’Insalata JC, Klatt B, Fu FH, Harner CD. Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 1997;5:234–238.

    Article  PubMed  CAS  Google Scholar 

  45. Amis AA, Kempson SA. Bone adaptation to a polyester fiber anterior cruciate ligament replacement. J Long Term Eff Med Implants 1999;9:153–168.

    PubMed  CAS  Google Scholar 

  46. Amis AA, Kempson SA. Failure mechanisms of polyester fiber anterior cruciate ligament implants—a human retrieval and laboratory study. J Biomed Mater Res 1999;48:534–539.

    Article  PubMed  CAS  Google Scholar 

  47. Keen CE, Amis AA. Polyester fibre prosthetic anterior cruciate ligament implant rupture: necrosis of ingrown connective tissue. Histopathology 1999;35:74–81.

    Article  PubMed  CAS  Google Scholar 

  48. Fujikawa K, Iseki F, Seedhom BB. Arthroscopy after anterior cruciate reconstruction with the Leeds-Keio ligament. J Bone Joint Surg Br 1989;71:566–570.

    PubMed  CAS  Google Scholar 

  49. Zaffagnini S, De Pasquale V, Montanari C, Strocchi R, Marcacci M. Histological and ultrastructural evaluation of Leeds-Keio ligament six years after implant. Knee Surg Sports Traumatol Arthrosc 1997;5:89–94.

    Article  PubMed  CAS  Google Scholar 

  50. Schindhelm K, Rogers GJ, Milthorpe BK, et al. Autograft and Leeds-Keio reconstructions of the ovine anterior cruciate ligament. Clin Orthop 1991;267:278–293.

    PubMed  Google Scholar 

  51. Macnicol MF, Penny ID, Sheppard L. Early results of the Leeds-Keio anterior cruciate ligament replacement. J Bone Joint Surg Br 1991;73:377–380.

    PubMed  CAS  Google Scholar 

  52. Amis AA. Development of the Apex polyester fibre cruciate ligament implant. Clin Mater 1994;15:51–60.

    Article  PubMed  CAS  Google Scholar 

  53. Clancy WG, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys: a histological, microangiographic and biomechanical analysis. J Bone Joint Surg Am 1981;63:1270–1284.

    PubMed  Google Scholar 

  54. Amiel D, Kleiner JB, Akeson WH. The natural history of the anterior cruciate ligament autograft of patellar tendon origin. Am J Sports Med 1986;14:449–462.

    Article  PubMed  CAS  Google Scholar 

  55. Frank C, Bray D, Rademaker A, Chrusch C, Sabiston P, Bodie D, Rangayyan. Electron microscopic quantification of collagen fibril diameters in the rabbit medial collateral ligament: a baseline for comparison. Connect Tissue Res 1989;19:11–25.

    PubMed  CAS  Google Scholar 

  56. Hart RA, Woo SLY, Newton PO. Ultrastructural morphometry of anterior cruciate and medial collateral ligaments: an experimental study in rabbits. J Orthop Res 1992;10:96–103.

    Article  PubMed  CAS  Google Scholar 

  57. Parry DAD, Barnes GRG, Craig AS. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc Roy Soc Lond 1978;203:305–321.

    Article  CAS  Google Scholar 

  58. Parry DAD, Craig AS. Growth and development of collagen fibrils in connective tissue. In Ruggeri A, Motta PM, eds. Ultrastructure of the Connective Tissue Matrix, Martinus Nijhoff, Boston, MA, 1984, pp. 34–63.

    Google Scholar 

  59. Thornton GM, Leask GP, Shrive NG, Frank CB. Early medial collateral ligament scars have inferior creep behaviour. J Orthop Res 2000;18:238–246.

    Article  PubMed  CAS  Google Scholar 

  60. Decker B, Bosch U, Kasperczyk W, Oestern HJ, Reale E. Ultrastructural changes of the patellar tendon as a cruciate ligament substitute (one year and two year results). J Submicrosc Cytol Pathol 1991;23:9–21.

    PubMed  CAS  Google Scholar 

  61. Cabaud HE, Feagin JA, Rodkey WG. Acute anterior cruciate ligament injury and repair reinforced with a biodegradable intraarticular ligament. Am J Sports Med 1982;10:259–265.

    Article  PubMed  CAS  Google Scholar 

  62. Bourne RB, Bitar H, Andreae PR, Martin LM, Finlay JB, Marquis F. In-vivo comparison of four absorbable sutures: Vicryl, Dexon plus, Maxon and PDS. Can J Surg 1988;31:43–45.

    PubMed  CAS  Google Scholar 

  63. Sanz LE, Patterson JA, Kamath R, Willett G, Ahmed SW, Butterfield AB. Comparison of Maxon suture with Vicryl, chromic catgut, and PDS sutures in fascial closure in rats. Obstet Gynecol 1988;71:418–422.

    PubMed  CAS  Google Scholar 

  64. Mashadi ZB, Amis AA. Variation of holding strength of synthetic absorbable flexor tendon sutures with time. J Hand Surg Br 1992;17:278–281.

    Article  PubMed  CAS  Google Scholar 

  65. Minuth WW, Sittinger M, Kloth S. Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res 1998;291:1–11.

    Article  PubMed  CAS  Google Scholar 

  66. Butler DL, Awad HA. Perspectives on cell and collagen composites for tendon repair. Clin Orthop Rel Res 1999;367S:S324–S332.

    Google Scholar 

  67. Woo SLY, Hildebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JHC. Tissue engineering of ligament and tendon healing. Clin Orthop 1999;367S:S312–S323.

    Google Scholar 

  68. Schmidt CC, Georgescu HI, Kwoh CK, Blomstrom GL, Emgle CP, Larkin LA, et al. Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J Orthop Res 1995;13:184–190.

    Article  PubMed  CAS  Google Scholar 

  69. Chan BP, Chan KM, Maffulli N, Webb S, Lee KKH. Effect of basic fibroblast growth factor: an in vitro study of tendon healing. Clin Orthop Rel Res 1997;342:239–247.

    Google Scholar 

  70. Anderson K, Seneviratne AM, Izawa K, Atkinson BL, Potter HG, Rodeo SA. Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med 2001;29:689–698.

    PubMed  CAS  Google Scholar 

  71. Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 1998;16:406–413.

    Article  PubMed  CAS  Google Scholar 

  72. Zeichen J, van Griensven M, Bosch U. The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med 2000;28:888–892.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Amis, A.A. (2006). Artificial Ligaments. In: Walsh, W.R. (eds) Repair and Regeneration of Ligaments, Tendons, and Joint Capsule. Orthopedic Biology and Medicine. Humana Press. https://doi.org/10.1385/1-59259-942-7:233

Download citation

  • DOI: https://doi.org/10.1385/1-59259-942-7:233

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-174-5

  • Online ISBN: 978-1-59259-942-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics