Skip to main content

Standards and Standardization of Molecular Diagnostics

  • Chapter
Molecular Diagnostics

Abstract

DNA has become a major target for clinical laboratory testing over the past 5 yr, and RNA testing is emerging for infectious disease and gene expression (1). To normalize laboratory results across different technology platforms as well as between laboratories, standardized reagents will become increasingly important. Reliable standards promote the speed at which a diagnostic test can be offered, as well as third-party reimbursement. Standardized control reagents ensure the ability of diagnostic laboratories to pass proficiency testing and quality assurance/quality control (QA/QC) measurements (2). Consensus guidelines endorsed by professional societies and governmental agencies provide a framework for determining standardization needs. In its role supporting US science and industry, the National Institute of Standards and Te c hnology (NIST), a nonregulatory agency of the US Department of Commerce, provides physical and chemical standards in support of national commerce, manufacturing, and science (3). These materials are available internationally as Standard Reference Materials (SRMs) for use by industry developing assays and/or technology platforms for diagnostic use, by regulatory agencies ensuring the quality and efficacy of these assays, and by clinical laboratories providing diagnostic tests for patients. Traditionally, NIST responds to standard needs as defined by these communities. Consensus is developed through NIST workshops attended by representatives of these communities as well as direct request by other governmental agencies. Specific examples of ongoing programs within the Biotechnology Division at NIST are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, P. E., Watson, M. S., Ticehurst, J. R., Colbert, J. C., and O’Connell, C. D. NIST physical standards for DNA-based medical testing. J. Clin. Lab. Anal. 16:5–10, 2002.

    Article  CAS  PubMed  Google Scholar 

  2. American College of Medical Genetics. Standards and Guidelines for Clinical Genetics Laboratories, 2nd ed., American College of Medical Genetics, Bethesda, MD.

    Google Scholar 

  3. Schooley, J. F. Responding to National Needs: The National Bureau of Standards Becomes the National Institute of Standards and Technology. 1969–1993.: US Government Printing Office Washington, DC, 2000.

    Google Scholar 

  4. 4. Wells, R. D. and Warren, S. T. (eds.). Genetic Instabilities and Hereditary Neurological Disease. Academic, San Diego, CA, 1998.

    Google Scholar 

  5. Jakupciak, J. P. and Wells, R. D. Genetic instabilities of triplet repeat sequences by recombination. Life 50:355–359, 2000.

    CAS  PubMed  Google Scholar 

  6. Evers-Kiebooms, G., Harper, P., Zoeteweij, M., et al. Predictive DNA-testing for Huntington’s disease and reproductive decision making: a European collaborative study. Eur. J. Hum. Genet. 10: 167–176, 2002.

    Article  PubMed  Google Scholar 

  7. O’Connell, C. D., Richie, K. L., Jakupciak, J. P., Amos, J., and Atha, D.H. Standardization of PCR amplification for fragile X trinu-cleotide repeat measurements. Clin. Genet. 61:13–20, 2002.

    Article  PubMed  Google Scholar 

  8. O’Connell, C. D. Standards for Nucleic Acid Diagnostic Applications, NIST, Gaithersburg, MD, 1998.

    Google Scholar 

  9. 9. Emery, A. E. (ed.) Principles and Practice of Medical Genetics. Churchill Livingstone, Edinburgh, UK, 1997.

    Google Scholar 

  10. Chastain, P. D., Eichler, E. E., Kang, S., Nelson, D. L., Levene, S. D., and Sinden, R. R. Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes. Biochemistry. 34:16,125–16,131, 1995.

    Article  CAS  PubMed  Google Scholar 

  11. Eng, C., Brody, L. C., Wagner, T. M. U., et al. Interpreting epidemi-ological research: blinded comparison of methods used to estimate the prevalence of inherited mutations in BRCA1. J. Med. Genet. 38:824–833, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Kristensen, V. N., Kelefiotis, D., Kristensen, T., and Borresen-Dale, A-L. High-throughput methods for detection of genetic variation. Biotechniques 30:318–332, 2001.

    CAS  PubMed  Google Scholar 

  13. Ellis, L. A., Taylor, C. F., and Taylor, G. R. A comparison of fluorescent SSCP and denaturing HPLC for high throughput mutation scanning. Hum. Mutat. 15:556–564, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Cotton, R. G. H. Mutation detection 2001: novel technologies, developments and applications for analysis of the human genome. Hum. Mutat. 19:313–314, 2002.

    Article  Google Scholar 

  15. Cotton R. G. H. Slowly but surely towards better scanning for mutations. Trends Genet. 13:43–45, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. O’Connell, C. D., Tully, L., Devaney, J. M., Marino, M., Jakupciak, J. P., and Atha, D. H. Renewable standard reference material for the detection of TP53 mutations. Mol. Diagn. 7:85–97, 2003.

    Article  PubMed  Google Scholar 

  17. O’Connell, C. D., Barker, P. E., Marino, M., et al. Molecular bio-markers used to detect cellular/genetic damage in tissue engineered skin, Schuttle, E. and Picciolo, G. L., eds., Tissue Engineered Medical Products. ASTM, West Conshohocken, PA, 2003.

    Google Scholar 

  18. Sunar-Reeder, B., Aydemir, S., Khan, A. R., et al. Use of TP53 reference materials to validate mutations in clinical tissue specimens by single-strand conformational polymorphism analysis. Mol. Diagn. 8:123–130, 2004.

    Article  PubMed  Google Scholar 

  19. Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C.C. P53 mutations in human cancer. Science 253:49–53, 1991.

    Article  CAS  PubMed  Google Scholar 

  20. Vogelstein, B. and Kinzer, K. p53 function and dysfunction. Cell 70:523–526, 1992.

    Article  CAS  PubMed  Google Scholar 

  21. Somlo, G., Simpson, J. F., Frankel, P., et al. Predictors of long-term outcome following high-dose chemotherapy in high-risk primary breast cancer. Br. J. Cancer 87:281–288, 2002.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, M. C. and Gelmann, E. P. p53 gene mutations: case study of a clinical marker for solid tumors. Semin. Oncol. 29:246–257, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Geisler, S., Lonning P. E., Aas, T.,et al. Influence of TP53 gene alterations and c-erb B-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res. 61:2505–2512, 2001.

    CAS  PubMed  Google Scholar 

  24. Atha, D. H, Wenz, H-M., Morehead, H., Tian, J., and O’Connell, C. D. Detection of p53 point mutations by single strand conformation polymorphism: analysis by capillary electrophoresis. Electrophoresis 19:172–179, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86:2766–2770, 1989.

    Article  CAS  PubMed  Google Scholar 

  26. Eng, C., Brody L. C., Wagner, T. M. U., et al. Interpreting epidemi-ological research: blinded comparison of methods used to estimate the prevalence of inherited mutations in BRCA1. J. Med. Genet. 38:824–833, 2001.

    Article  CAS  PubMed  Google Scholar 

  27. Anderson, T. I. and Borresen, D. A.-L. Alterations of the TP53 gene as a potential prognostic marker in breast carcinomas. Advantages of using constant denaturant gel electrophoresis in mutation detection. Diagn. Mol. Pathol. 4:203–211, 1995.

    Article  Google Scholar 

  28. Keller, G., Hartmann, A., Mueller, J., and Hofler, H. Denaturing high pressure chromatography (DHPLC) for the analysis of somatic p53 mutations. Lab. Invest. 81:1735–1737, 2001.

    CAS  PubMed  Google Scholar 

  29. Ahrendt, S. A., Halachmi, S, Chow, J. T, et al. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc. Natl. Acad. Sci. USA 96:7382–7387, 1999.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jakupciak, J.P., O’Connell, C.D. (2006). Standards and Standardization of Molecular Diagnostics. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Humana Press. https://doi.org/10.1385/1-59259-928-1:243

Download citation

  • DOI: https://doi.org/10.1385/1-59259-928-1:243

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-356-5

  • Online ISBN: 978-1-59259-928-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics