Skip to main content

Poly(ADP-Ribose) Polymerase Activation and Nitrosative Stress in the Development of Cardiovascular Disease in Diabetes

  • Chapter
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1268 Accesses

Abstract

Macro- and microvascular disease are the most common causes of morbidity and mortality in patients with diabetes mellitus (DM). Diabetic vascular dysfunction is a major clinical problem, which underlies the development of various severe complications including retinopathy, nephropathy, neuropathy, and increase the risk of stroke, hypertension, and myocardial infarction (MI). Hyperglycemic episodes, which complicate even well-controlled cases of diabetes, are closely associated with oxidative and nitrosative stress, which can trigger the development of cardiovascular disease. Recently, emerging experimental and clinical evidence indicates that high-circulating glucose in DM is able to induce oxidative and nitrosative stress in the cardiovascular system, with the concomitant activation of an abundant nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). This process results in acute loss of the ability of the endothelium to generate nitric oxide (NO; endothelial dysfunction) and also leads to a severe functional impairment of the diabetic heart (diabetic cardiomyopathy). Accordingly, neutralization of peroxynitrite or pharmacological inhibition of PARP protect against diabetic cardiovascular dysfunction. The goal of this chapter is to summarize the recently emerging evidence supporting the concept that nitrosative stress and PARP activation play a role in the pathogenesis of diabetic endothelial dysfunction and cardiovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Virag L, Szabo C. The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002;54:375–429.

    Article  PubMed  CAS  Google Scholar 

  2. Szabó C, Dawson VL. Role of poly (ADP-ribose) synthetase activation in inflammation and reperfusion injury. Trends Pharmacol Sci 1998;19:287–298.

    Article  PubMed  Google Scholar 

  3. De Murcia G, Schreiber V, Molinete M, et al. Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 1994;138:15–24.

    Article  PubMed  Google Scholar 

  4. Le Rhun Y, Kirkland JB, Shah GM. Cellular responses to DNA damage in the absence of Poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 1998;245:1–10.

    Article  PubMed  Google Scholar 

  5. Szabó C. Cell Death: the role of PARP. CRC Press, Boca Raton, FL: 2000.

    Google Scholar 

  6. De Murcia G, Shall S. (Eds.) From DNA damage and stress signaling to cell death; poly ADP-ribosylation reactions. Oxford University Press, Oxford, England, 2000.

    Google Scholar 

  7. Davidovic L, Vodenicharov M, Affar EB, Poirier GG. Importance of poly (ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 2001;268:7–13.

    Article  PubMed  CAS  Google Scholar 

  8. Rudat V, Kupper JH, Weber KJ. Trans-dominant inhibition of poly(ADP-ribosyl)ation leads to decreased recovery from ionizing radiation-induced cell killing. Int J Radiat Biol 1998;73:325–330.

    Article  PubMed  CAS  Google Scholar 

  9. Menissier-de Murcia J, Niedergang C, Trucco C, et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 1997;94:7303–7307.

    Article  CAS  Google Scholar 

  10. Hiromatsu Y, Sato M, Yamada K, Nonaka K. Nicotinamide and 3-aminobenzamide inhibit recombinant human interferon-gamma-induced HLA-DR antigen expression, but not HLA-A, B, C antigen expression, on cultured human thyroid cells. Clin Endocrinol 1992;36:91–95.

    CAS  Google Scholar 

  11. Szabó C, Wong H, Bauer PI, et al. Regulation of components of the inflammatory response by 5-iodo-6-amino-1,2-benzopyrone, an inhibitor of poly (ADP-ribose) synthetase and pleiotropic modifier of cellular signal pathways. Int J Oncol 1997;10:1093–1104.

    Google Scholar 

  12. Ehrlich W, Huser H, Kroger H. Inhibition of the induction of collagenase by interleukin-1 beta in cultured rabbit synovial fibroblasts after treatment with the poly(ADP-ribose)-polymerase inhibitor 3-aminobenzamide. Rheumatol Int 1995;15:171–172.

    Article  PubMed  CAS  Google Scholar 

  13. Zingarelli B, Salzman AL, Szabó C. Genetic disruption of poly (ADP ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia-reperfusion injury. Circ Res 1998;83:85–94.

    PubMed  CAS  Google Scholar 

  14. Simbulan-Rosenthal CM, Ly DH, et al. Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc Natl Acad Sci 2000;97:11,274–11,279.

    Article  PubMed  CAS  Google Scholar 

  15. Satoh MS, Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature 1992;356:356–358.

    Article  PubMed  CAS  Google Scholar 

  16. Oikawa A, Tohda H, Kanai M, Miwa M, Sugimura T. Inhibitors of poly(adenosine diphosphate ribose) polymerase induce sister chromatid exchanges. Biochem Biophys Res Commun 1980;97:1311–1316.

    Article  PubMed  CAS  Google Scholar 

  17. Park SD, Kim CG, Kim MG. Inhibitors of poly (ADP-ribose) polymerase enhance DNA strand breaks, excision repair, and sister chromatid exchanges induced by alkylating agents. Environ Mutagen 1983;5:515–525.

    Article  PubMed  Google Scholar 

  18. Herceg Z, Wang ZQ. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res 2001;477:97–110.

    PubMed  CAS  Google Scholar 

  19. Poirier GG, de Murcia G, Jongstra-Bilen J, Niedergang C, Mandel P. Poly(ADP-ribosyl)ation of polynuclesomes causes relaxation of chromatin structure. Proc Natl Acad Sci 1982;79:3423–3427.

    Article  PubMed  CAS  Google Scholar 

  20. Lautier D, Lageux J, Thibodeau J, Ménard L, Poirier GG. Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem 1993;122:171–193.

    Article  PubMed  CAS  Google Scholar 

  21. Oei SL, Ziegler M. ATP for the DNA ligation step in base excision repair is generated from poly(ADP-ribose). J Biol Chem 2000;28;275:23,234–23,239.

    Google Scholar 

  22. Ullrich O, Ciftci O, Hass R. Proteasome activation by poly-ADP-ribose-polymerase in human myelomonocytic cells after oxidative stress. Free Radic Biol Med 2000;29:995–1004.

    Article  PubMed  CAS  Google Scholar 

  23. Szabó C, Zingarelli B, O’Connor M, Salzman AL. DNA strand breakage, activation of poly-ADP ribosyl synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 1996;93:1753–1758.

    Article  PubMed  Google Scholar 

  24. Szabó C, Virág L, Cuzzocrea S, et al. Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthetase. Proc Natl Acad Sci USA 1998;95:3867–3872.

    Article  PubMed  Google Scholar 

  25. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotina-mide adenine dinucleotide. J Clin Invest 1986;77:1312–1320.

    PubMed  CAS  Google Scholar 

  26. Schraufstatter IU, Hyslop PA, Hinshaw DB, Spragg RG, Sklar LA, Cochrane CG. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 1986;83:4908–4912.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 1994;263:687–689.

    Article  PubMed  CAS  Google Scholar 

  28. Radons J, Heller B, Burkle A, et al. Nitric oxide toxicity in islet cells involves poly (ADP-ribose) polymerase activation and concomitant NAD depletion. Biochem Biophys Res Comm 1994;199:1270–1277.

    Article  PubMed  CAS  Google Scholar 

  29. Bai P, Bakondi E, Szabo EE, Gergely P, Szabo C, Virag L. Partial protection by poly(ADP-ribose) polymerase inhibitors from nitroxyl-induced cytotoxity in thymocytes. Free Radic Biol Med 2001;31:1616–1623

    Article  PubMed  CAS  Google Scholar 

  30. Ha HC, Hester LD, Snyder SH. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci USA 2002;99:3270–3275.

    Article  PubMed  CAS  Google Scholar 

  31. Hassa PO, Hottiger MO. A role of poly (ADP-ribose) polymerase in NF-kappaB transcriptional activation. Biol Chem 1999;380:953–959.

    Article  PubMed  CAS  Google Scholar 

  32. Oliver FJ, Menissier-de Murcia J, Nacci C, et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 1999;18:4446–4454.

    Article  PubMed  CAS  Google Scholar 

  33. Amstad PA, Krupitza G, Cerutti PA. Mechanism of c-fos induction by active oxygen. Cancer Res 1992;52:3952–3960.

    PubMed  CAS  Google Scholar 

  34. Roebuck KA, Rahman A, Lakshminarayanan V, Janakidevi K, Malik AB. H2O2 and tumor necrosis factor-alpha activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis-regulatory elements within the ICAM-1 promoter. J Biol Chem 1995;270:18,966–18,974.

    Article  PubMed  CAS  Google Scholar 

  35. Thiemermann C, Bowes J, Myint FP, Vane JR. Inhibition of the activity of poly(ADP ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc Natl Acad Sci USA 1997;94:679–683.

    Article  PubMed  CAS  Google Scholar 

  36. Szabo G, Bahrle S, Stumpf N, et al. Poly( ADP-Ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ Res 2002;90:100–106.

    Article  PubMed  CAS  Google Scholar 

  37. Pacher P, Liaudet L, Bai P, et al. Activation of poly(ADP-ribose) polymerase contributes to the development of doxorubicin-induced heart failure. J Pharmacol Exp Ther 2002;300:862–687.

    Article  PubMed  CAS  Google Scholar 

  38. Pacher P, Liaudet L, Mabley J, Komjati K, Szabo C. Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol 2002;40:1006–1016.

    Article  PubMed  CAS  Google Scholar 

  39. Eliasson MJ, Sampei K, Mandir AS, et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 1997;3:1089–1095.

    Article  PubMed  CAS  Google Scholar 

  40. Szabo C, Cuzzocrea S, Zingarelli B, O’Connor M, Salzman AL. Endothelial dysfunction in a rat model of endotoxic shock: importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 1997;100:723–735.

    PubMed  CAS  Google Scholar 

  41. Soriano FG, Liaudet L, Szabo E, et al. Resistance to acute septic peritonitis in poly(ADP-ribose) polymerase-1-deficient mice. Shock. 2002;17:286–292.

    Article  PubMed  Google Scholar 

  42. Pacher P, Cziraki A, Mabley JG, Liaudet L, Papp L, Szabo C. Role of poly(ADP-ribose) polymerase activation in endotoxin-induced cardiac collapse in rodents. Biochem Pharmacol. 2002;64:1785–1791.

    Article  PubMed  CAS  Google Scholar 

  43. Burkart V, Wang ZQ, Radons J, et al. Mice Lacking the Poly(ADP-Ribose) Polymerase Gene Are Resistant to Pancreatic Beta-Cell Destruction and Diabetes Development Induced by Streptozocin. Nat Med 1999;5:314–319.

    Article  PubMed  CAS  Google Scholar 

  44. Pieper AA, Brat DJ, Krug DK, et al. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci USA 1999;96:3059–3064.

    Article  PubMed  CAS  Google Scholar 

  45. Pacher P, Mabley JG, Soriano FG, Liaudet L, Komjati K, Szabo C. Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation. Br J Pharmacol 2002;135:1347–1350.

    Article  PubMed  CAS  Google Scholar 

  46. Pacher P, Mabley JG, Soriano FG, Liaudet L, Szabo C. Activation of poly(ADP-ribose) polymerase contributes to the endothelial dysfunction associated with hypertension and aging. Int J Mol Med 2002;9:659–664.

    PubMed  CAS  Google Scholar 

  47. Hung TH, Skepper JN, Charnock-Jones DS, Burton GJ. Hypoxia-reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res 2002;90:1274–1281.

    Article  PubMed  CAS  Google Scholar 

  48. Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 2002;106:927–932.

    Article  PubMed  CAS  Google Scholar 

  49. Garcia Soriano F, Virág L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly (ADP-ribose) polymerase activation. Nature Medicine 2001;7:108–113.

    Article  PubMed  CAS  Google Scholar 

  50. Soriano FG, Mabley JG, Pacher P, Liaudet L, Szabó C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ Res 2001;89:684–691.

    Article  PubMed  CAS  Google Scholar 

  51. Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabó É, Szabó C. The role of poly (ADP-ribose) polymerase in the development of myocardial and endothelial dysfunction in diabetes mellitus. Diabetes 2002;51:514–521.

    Article  PubMed  CAS  Google Scholar 

  52. Szabo C, Zanchi A, Komjati K, et al. Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation. 2002;106:2680–2686.

    Article  PubMed  CAS  Google Scholar 

  53. Furchgott RF. Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Biosci Rep 1999;19:235–251.

    Article  PubMed  CAS  Google Scholar 

  54. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840–844.

    PubMed  CAS  Google Scholar 

  55. Caballero AE, Arora S, Saouaf R, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 1999;48:1856–1862.

    Article  PubMed  CAS  Google Scholar 

  56. Ruderman NB, Williamson JR, Brownlee M. Glucose and diabetic vascular disease. FASEB J 1992;6:2905–2914.

    PubMed  CAS  Google Scholar 

  57. Cosentino F, Luscher TF. Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol 1998;32:S54–61.

    PubMed  CAS  Google Scholar 

  58. Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev 2001;22:36–52.

    Article  PubMed  CAS  Google Scholar 

  59. Guzik TJ, West NE, Black E, et al. Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 2000;86:85–90.

    Google Scholar 

  60. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol 2000;130:963–974.

    Article  PubMed  Google Scholar 

  61. Beckman J A. Inhibition of protein kinase Cbeta prevents impaired endothelium-dependent vasodilation caused by hyperglycemia in humans. Circ Res 2002;90:107–111.

    Article  PubMed  CAS  Google Scholar 

  62. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–790.

    Article  PubMed  CAS  Google Scholar 

  63. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–820.

    Article  PubMed  CAS  Google Scholar 

  64. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19:257–267.

    Article  PubMed  CAS  Google Scholar 

  65. Spitaler MM, Graier WF. Vascular targets of redox signalling in diabetes mellitus. Diabetologia. 2002;45:476–494.

    Article  PubMed  CAS  Google Scholar 

  66. Cosentino F, Hishikawa K, Katusic ZS, Luscher TF. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 1997;96:25–28.

    PubMed  CAS  Google Scholar 

  67. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:1424–1437.

    Google Scholar 

  68. Eiserich JP, Hristova M, Cross CE, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 1998;391:393–397.

    Article  PubMed  CAS  Google Scholar 

  69. Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett 1997;411:157–160.

    Article  PubMed  CAS  Google Scholar 

  70. Ceriello A, Mercuri F, Quagliaro L, Assaloni R, Motz E, Tonutti L, Taboga C. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia. 2001;44:834–838.

    Article  PubMed  CAS  Google Scholar 

  71. Tannous M, Rabini RA, Vignini A, et al. Evidence for iNOS-dependent peroxynitrite production in diabetic platelets. Diabetologia 1999;42:539–544.

    Article  PubMed  CAS  Google Scholar 

  72. Pennathur S, Wagner JD, Leeuwenburgh C, Litwak KN, Heinecke JW. A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J Clin Invest 2001;107:853–860.

    PubMed  CAS  Google Scholar 

  73. Ceriello A, Quagliaro L, Catone B, et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 2002;25:1439–1443.

    Article  PubMed  CAS  Google Scholar 

  74. Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res 2000;87:1123–1132.

    PubMed  CAS  Google Scholar 

  75. Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 2001;50:1414–1424.

    Article  PubMed  CAS  Google Scholar 

  76. Ceriello A, Quagliaro L, D’Amico M, et al. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes 2002;51:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  77. Mihm MJ, Jing L, Bauer JA. Nitrotyrosine causes selective vascular endothelial dysfunction and DNA damage. J Cardiovasc Pharmacol 2000;36:182–187.

    Article  PubMed  CAS  Google Scholar 

  78. Zou MH, Shi C, Cohen RA. High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 2002;51:198–203.

    Article  PubMed  CAS  Google Scholar 

  79. Cosentino F, Eto M, De Paolis P, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation. 2003;107:1017–1023.

    Article  PubMed  CAS  Google Scholar 

  80. Ellis EA, Guberski DL, Hutson B, Grant MB. Time course of NADH oxidase, inducible nitric oxide synthase and peroxynitrite in diabetic retinopathy in the BBZ/WOR rat. Nitric Oxide. 2002;6:295–304.

    Article  PubMed  CAS  Google Scholar 

  81. Du Y, Smith MA, Miller CM, Kern TS. Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J Neurochem. 2002;80:771–779.

    Article  PubMed  CAS  Google Scholar 

  82. El-Remessy AB, Behzadian MA, Abou-Mohamed G, Franklin T, Caldwell RW, Caldwell RB. Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. Am J Pathol. 2003;162:1995–2004.

    PubMed  CAS  Google Scholar 

  83. Onozato ML, Tojo A, Goto A, Fujita T, Wilcox CS. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int 2002;61:186–194.

    Article  PubMed  CAS  Google Scholar 

  84. Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001;50:1927–1937.

    Article  PubMed  CAS  Google Scholar 

  85. Hoeldtke RD, Bryner KD, McNeill DR, et al. Nitrosative stress, uric Acid, and peripheral nerve function in early type 1 diabetes. Diabetes 2002;51:2817–2825.

    Article  PubMed  CAS  Google Scholar 

  86. Fein FS. Diabetic cardiomyopathy. Diabetes Care 1990;13:1169–1179.

    Article  PubMed  CAS  Google Scholar 

  87. Illan F, Valdes-Chavarri M, Tebar J, et al. Anatomical and functional cardiac abnormalities in type I diabetes. Clin Invest 1992;70:403–410.

    Article  CAS  Google Scholar 

  88. Joffe II, Travers KE, Perreault-Micale CL, et al. Abnormal cardiac function in the streptozotocin-induced non-insulin-dependent diabetic rat: noninvasive assessment with doppler echocardiography and contribution of the nitric oxide pathway. J Am Coll Cardiol 1999;34:2111–2119.

    Article  PubMed  CAS  Google Scholar 

  89. Regan TJ, Ahmed S, Haider B, Moschos C, Weisse A. Diabetic cardiomyopathy: experimental and clinical observations. N Engl J Med 1994;91:776–778.

    CAS  Google Scholar 

  90. Bell DS. Diabetic cardiomyopathy: a unique entity or a complication of coronary artery disease? Diabetes Care 1995;18:708–714.

    Article  PubMed  CAS  Google Scholar 

  91. Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 1998;40:239–247.

    Article  PubMed  CAS  Google Scholar 

  92. Szabo C, Mabley JG, Moeller SM, et al. Soriano Part I: Pathogenetic Role of Peroxynitrite in the Development of Diabetes and Diabetic Vascular Complications: Studies With FP15, A Novel Potent Peroxynitrite Decomposition Catalyst. Mol Med. 2002;8:571–580.

    PubMed  CAS  Google Scholar 

  93. Mihm MJ, Coyle CM, Schanbacher BL, Weinstein DM, Bauer JA. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc Res 2001;49:798–807.

    Article  PubMed  CAS  Google Scholar 

  94. Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol 2001;281:2289–2294.

    Google Scholar 

  95. Pacher P, Liaudet L, Bai P, et al. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 2003;107:896–904.

    Article  PubMed  CAS  Google Scholar 

  96. Weinstein DM, Mihm MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 2000;294:396–401.

    PubMed  CAS  Google Scholar 

  97. Mihm MJ, Bauer JA. Peroxynitrite-induced inhibition and nitration of cardiac myofibrillar creatine kinase. Biochimie 2002;84:1013–1019.

    Article  PubMed  CAS  Google Scholar 

  98. Bianchi C, Wakiyama H, Faro R, et al. A novel peroxynitrite decomposer catalyst (FP-15) reduces myocardial infarct size in an in vivo peroxynitrite decomposer and acute ischemia-reperfusion in pigs. Ann Thorac Surg 2002;74:1201–1207.

    Article  PubMed  Google Scholar 

  99. Park KS, Kim JH, Kim MS, et al. Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes. 2001;50:2837–2841.

    Article  PubMed  CAS  Google Scholar 

  100. Lorenzi M, Montisano DF, Toledo S, Wong HC. Increased single strand breaks in DNA of lymphocytes from diabetic subjects. J Clin Invest 1987;79:653–656.

    Article  PubMed  CAS  Google Scholar 

  101. Anderson D, Yu TW, Wright J, Ioannides C. An examination of DNA strand breakage in the comet assay and antioxidant capacity in diabetic patients. Mutat Res 1998;398:151–161.

    PubMed  CAS  Google Scholar 

  102. Astley S, Langrish-Smith A, Southon S, Sampson M. Vitamin E supplementation and oxidative damage to DNA and plasma LDL in type 1 diabetes. Diabetes Care 1999;22:1626–1631.

    Article  PubMed  CAS  Google Scholar 

  103. Sardas S, Yilmaz M, Oztok U, Cakir N, Karakaya AE. Assessment of DNA strand breakage by comet assay in diabetic patients and the role of antioxidant supplementation. Mutat Res 2001;490:123–129.

    PubMed  CAS  Google Scholar 

  104. Dincer Y, Akcay T, Ilkova H, Alademir Z, Ozbay G. DNA damage and antioxidant defense in peripheral leukocytes of patients with Type I diabetes mellitus. Mutat Res 2003;527:49–55.

    PubMed  CAS  Google Scholar 

  105. Szabó E, Kern TS, Virag L, Mabley J, Szabó C. Evidence for poly(ADP-ribose) polymerase activation in the diabetic retina. FASEB J 2001;15:A942.

    Google Scholar 

  106. Wahlberg G, Carlson LA, Wasserman J, Ljungqvist A. Protective effect of nicotinamide against nephropathy in diabetic rats. Diabetes Res 1985;2:307–312.

    PubMed  CAS  Google Scholar 

  107. Minchenko AG, Stevens MJ, White L, et al. Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J 2003;11:1514–1516.

    Google Scholar 

  108. Obrosova IG, Li F, Abatan OI, et al. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 2004;53(3):711–720.

    Article  PubMed  CAS  Google Scholar 

  109. Soriano FG, Virag L, Szabo C. Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation. J Mol Med 2001;79:437–448.

    Article  PubMed  CAS  Google Scholar 

  110. Ceriello A, Piconi L, Quagliaro L, et al. Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADP-ribose) polymerase. J Thromb Haemost 2004;8:1453–1459.

    Google Scholar 

  111. Du X, Martsumura T, Edelstein D, et al. Inhibition of GAPHH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003;112:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  112. Komjáti K, Jagtap P, Baloglu E, VanDuzer J, Salzman AL, Szabó C. Poly(ADP-ribose) polymerase inhibition in stroke: establishment of the therapeutic window of intervention and delineation of its role in the patgogenesis of white matter damage. FASEB J 2002;16:A599.

    Google Scholar 

  113. Shimoda K, Murakami K, Enkhbaatar P, et al. Effect of poly(ADPribose) synthetase inhibition on burn and smoke inhalation injury in sheep. Am J Physiol Lung Cell Mol Physiol 2003;285:L240–249.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pacher, P., Szabó, C. (2005). Poly(ADP-Ribose) Polymerase Activation and Nitrosative Stress in the Development of Cardiovascular Disease in Diabetes. In: Johnstone, M.T., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-908-7:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-908-7:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-413-5

  • Online ISBN: 978-1-59259-908-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics