Skip to main content

Generation of Islet-Like Structures From ES Cells

  • Chapter
Stem Cells in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 491 Accesses

Abstract

Type 1 and type 2 diabetes, though different diseases, both involve inadequate cell mass of insulin-producing β cells, the most abundant cell type of pancreatic islets of Langerhans. Insulin injections alleviate hyperglycemia in the majority of diabetic patients. However, insulin therapy cannot provide the finely tuned control of glucose homeostasis afforded by native pancreatic islets. As a result, diabetic patients commonly develop multiple life-threatening complications, such as cardiovascular and kidney disease, neuropathy, and blindness. Recent successes in pancreatic islet transplantation (1) fueled new hope that this procedure could significantly improve the quality of life for diabetic patients. Unfortunately, because the islets needed for transplantation are obtained from cadaveric donors only, few patients can receive this therapy. The shortage of islets could potentially be overcome by deriving them from alternative sources such as embryonic stem (ES) cells. This chapter will provide a review of the recent progress in generating islet-like hormone-producing cell clusters from ES cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000;343:230–238.

    Article  PubMed  CAS  Google Scholar 

  2. Kanno T, Gopel SO, Rorsman P, Wakui M. Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on alpha-, beta-and delta-cells of the pancreatic islet. Neurosci Res 2002;42:79–90.

    Article  PubMed  CAS  Google Scholar 

  3. Sunami E, Kanazawa H, Hashizume H, Takeda M, Hatakeyama K, Ushiki T. Morphological characteristics of Schwann cells in the islets of Langerhans of the murine pancreas. Arch Histol Cytol 2001;64:191–201.

    Article  PubMed  CAS  Google Scholar 

  4. Teitelman G, Guz Y, Ivkovic S, Ehrlich M. Islet injury induces neurotrophin expression in pancreatic cells and reactive gliosis of peri-islet Schwann cells. J Neurobiol 1998;34:304–318.

    Article  PubMed  CAS  Google Scholar 

  5. Bonner-Weir S, Sharma A. Pancreatic stem cells. J Pathol 2002;197:519–526.

    Article  PubMed  Google Scholar 

  6. Lechner A, Habener JF. Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus. Am J Physiol Endocrinol Metab 2003;284:E259–E266.

    PubMed  CAS  Google Scholar 

  7. Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 2002;293:670–674.

    Article  PubMed  CAS  Google Scholar 

  8. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154–156.

    Article  PubMed  CAS  Google Scholar 

  9. Keller GM. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 1995;7:862–869.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenthal N. Prometheus’s vulture and the stem-cell promise. N Engl J Med 2003;349: 267–274.

    Article  PubMed  Google Scholar 

  11. Loebel DA, Watson CM, De Young RA, Tam PP. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003;264:1–14.

    Article  PubMed  CAS  Google Scholar 

  12. Rossant J, Papaioannou VE. The relationship between embryonic, embryonal carcinoma and embryo-derived stem cells. Cell Differ 1984;15:155–161.

    Article  PubMed  CAS  Google Scholar 

  13. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.

    Article  PubMed  CAS  Google Scholar 

  14. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 1996;59:89–102.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000;18:675–679.

    Article  PubMed  CAS  Google Scholar 

  16. Wiles MV, Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 1991;111:259–267.

    PubMed  CAS  Google Scholar 

  17. Yamashita J, Itoh H, Hirashima M, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000;408:92–96.

    Article  PubMed  CAS  Google Scholar 

  18. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 2002;91:189–201.

    Article  PubMed  CAS  Google Scholar 

  19. Kim JH, Auerbach JM, Rodriguez-Gomez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002;418:50–56

    Article  PubMed  CAS  Google Scholar 

  20. Czyz J, Wobus A. Embryonic stem cell differentiation: the role of extracellular factors. Differentiation 2001;68:167–174.

    Article  PubMed  CAS  Google Scholar 

  21. Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 1996;98:216–224.

    PubMed  CAS  Google Scholar 

  22. Li M, Pevny L, Lovell-Badge R, Smith A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 1998;8:971–974.

    Article  PubMed  CAS  Google Scholar 

  23. Fareed MU, Moolten FL. Suicide gene transduction sensitizes murine embryonic and human mesenchymal stem cells to ablation on demand—a fail-safe protection against cellular misbehavior. Gene Ther 2002;9:955–962.

    Article  PubMed  CAS  Google Scholar 

  24. Schuldiner M, Itskovitz-Eldor J, Benvenisty N. Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 2003;21:257–265.

    Article  PubMed  CAS  Google Scholar 

  25. Kim SK, MacDonald RJ. Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 2002;12:540–547.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar M, Melton D. Pancreas specification: a budding question. Curr Opin Genet Dev 2003;13: 401–407.

    Article  PubMed  CAS  Google Scholar 

  27. Wilson ME, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech Dev 2003; 120:65–80.

    Article  PubMed  CAS  Google Scholar 

  28. Kumar M, Jordan N, Melton D, Grapin-Botton A. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol 2003;259:109–122.

    Article  PubMed  CAS  Google Scholar 

  29. Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development 1997;124:4243–4252.

    PubMed  CAS  Google Scholar 

  30. Zaret KS. Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet Dev 2001;11: 568–574.

    Article  PubMed  CAS  Google Scholar 

  31. Edlund H. Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat Rev Genet 2002;3:524–532.

    Article  PubMed  CAS  Google Scholar 

  32. Slack JM. Developmental biology of the pancreas. Development 1995;121:1569–1580.

    PubMed  CAS  Google Scholar 

  33. Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science 2001;294:564–567.

    Article  PubMed  CAS  Google Scholar 

  34. Yoshitomi H, Zaret KS. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 2004;131:807–817.

    Article  PubMed  CAS  Google Scholar 

  35. Lammert E, Cleaver O, Melton D. Role of endothelial cells in early pancreas and liver development. Mech Dev 2003;120:59–64.

    Article  PubMed  CAS  Google Scholar 

  36. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 2002;32:128–134.

    Article  PubMed  CAS  Google Scholar 

  37. Chiang MK, Melton DA. Single-cell transcript analysis of pancreas development. Dev Cell 2003;4: 383–393.

    Article  PubMed  CAS  Google Scholar 

  38. Gu G, Wells JM, Dombkowski D, Preffer F, Aronow B, Melton DA. Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development 2004;131:165–179.

    Article  PubMed  CAS  Google Scholar 

  39. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001;50:1691–1697.

    Article  PubMed  CAS  Google Scholar 

  40. Schwitzgebel VM, Scheel DW, Conners JR, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000;127:3533–3542.

    PubMed  CAS  Google Scholar 

  41. Shiroi A, Yoshikawa M, Yokota H, et al. Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 2002;20:284–292.

    Article  PubMed  CAS  Google Scholar 

  42. Kahan BW, Jacobson LM, Hullett DA, et al. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes 2003;52:2016–2024.

    Article  PubMed  CAS  Google Scholar 

  43. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:157–162.

    Article  PubMed  CAS  Google Scholar 

  44. Soria B. In-vitro differentiation of pancreatic beta-cells. Differentiation 2001;68:205–219.

    Article  PubMed  CAS  Google Scholar 

  45. Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 2002; 99:9864–9569.

    Article  PubMed  CAS  Google Scholar 

  46. Levinson-Dushnik M, Benvenisty N. Involvement of hepatocyte nuclear factor 3 in endoderm differentiation of embryonic stem cells. Mol Cell Biol 1997;17:3817–3822.

    PubMed  CAS  Google Scholar 

  47. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. From the cover: effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000; 97:11307–11312.

    Article  PubMed  CAS  Google Scholar 

  48. Komatsu M, Yokokawa N, Takeda T, Nagasawa Y, Aizawa T, Yamada T. Pharmacological characterization of the voltage-dependent calcium channel of pancreatic B-cell. Endocrinology 1989125:2008–2014.

    Article  PubMed  CAS  Google Scholar 

  49. Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 2002;296:1118–1120.

    Article  PubMed  CAS  Google Scholar 

  50. Nakamura T, Kishi A, Nishio Y, et al. Insulin production in a neuroectodermal tumor that expresses islet factor-1, but not pancreatic-duodenal homeobox 1. J Clin Endocrinol Metab 2001;86:1795–1800.

    Article  PubMed  CAS  Google Scholar 

  51. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell 1990;60:585–595.

    Article  PubMed  CAS  Google Scholar 

  52. Zulewski H, Abraham EJ, Gerlach MJ, et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001;50:521–533.

    Article  PubMed  CAS  Google Scholar 

  53. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002;143:3152–3161.

    Article  PubMed  CAS  Google Scholar 

  54. Delacour A, Nepote V, Trumpp A, Herrera PL. Nestin expression in pancreatic exocrine cell lineages. Mech Dev 2004;121:3–14.

    Article  PubMed  CAS  Google Scholar 

  55. Esni F, Stoffers DA, Takeuchi T, Leach SD. Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas. Mech Dev 2004;121:15–25.

    Article  PubMed  CAS  Google Scholar 

  56. Selander L, Edlund H. Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech Dev 2002;113:189–192.

    Article  PubMed  CAS  Google Scholar 

  57. Lardon J, Rooman I, Bouwens L. Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem Cell Biol 2002;117:535–540.

    Article  PubMed  CAS  Google Scholar 

  58. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI. Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:1995;342–357.

    Article  PubMed  CAS  Google Scholar 

  59. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001;292:1389–1394.

    Article  PubMed  CAS  Google Scholar 

  60. Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 2002;99:16105–16110.

    Article  PubMed  CAS  Google Scholar 

  61. Blyszczuk P, Czyz J, Kania G, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003;100:998–1003.

    Article  PubMed  CAS  Google Scholar 

  62. Kania G, Blyszczuk P, Czyz J, Navarrete-Santos A, Wobus AM. Differentiation of mouse embryonic stem cells into pancreatic and hepatic cells. Methods Enzymol 2003;365:287–303.

    Article  PubMed  CAS  Google Scholar 

  63. Kim D, Gu Y, Ishii M, et al. In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas 2003;27:e34–e41.

    Article  PubMed  Google Scholar 

  64. Moritoh Y, Yamato E, Yasui Y, Miyazaki S, Miyazaki J. Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes 2003;52:1163–1168.

    Article  PubMed  CAS  Google Scholar 

  65. Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA. Insulin staining of ES cell progeny from insulin uptake. Science 2003;299:363.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lumelsky, N. (2005). Generation of Islet-Like Structures From ES Cells. In: Lester, L.B. (eds) Stem Cells in Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1385/1-59259-900-1:147

Download citation

  • DOI: https://doi.org/10.1385/1-59259-900-1:147

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-407-4

  • Online ISBN: 978-1-59259-900-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics